LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1)
默认的参数值:
LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1)
参数详解:
1.penalty:正则化项的选择。正则化主要有两种:L1和L2,LogisticRegression默认选择L2正则化。
‘liblinear’ 支持L1和L2,但‘newton-cg’, ‘sag’ 和‘lbfgs’ 只支持L2正则化。
2.dual:bool(True、False), default:False
如果为True,则求解对偶形式,只有在penalty&#