人工智能 对比试验_比较医学影像人工智能与临床医生表现的研究大多不可靠...

比较医学影像人工智能与临床医生表现的研究大多不可靠

作者:小柯机器人 发布时间:2020/3/28 21:03:58

英国伦敦帝国理工学院Myura Nagendran研究组取得一项新突破。他们对人工智能与临床医生的优势比较研究进行了系统评价。2020年3月25日,《英国医学杂志》发表了这一成果。

医学成像对深度学习研究越来越感兴趣。卷积神经网络(CNN)在深度学习中的主要区别性特征是,当CNN收到原始数据时,它们会发展出自己的模式识别所需的表达形式。该算法自己学习图像的特征,这些特征对于分类很重要,而非由人类告知要使用哪些特征。

比较医学成像诊断深度学习算法与临床医生表现的研究有很多,为了系统评估这些研究的设计、报告标准、偏倚风险和主张,研究组对Medline、Embase等大型数据库从2010年至2019年6月的相关研究进行检索并进行回顾性分析。

研究组发现了10条深度学习随机临床试验的记录,其中2条已发表,还有8条正在进行。在确定的81项非随机临床试验中,9项是前瞻性的,仅6项是在现实世界临床环境中进行的试验。比较组中医学专家的中位数仅为4名。

对所有数据集和代码的完全访问受到严重限制。81项研究中有58项的总体偏倚风险很高,且未严格遵守报告标准。有61篇研究的摘要指出,人工智能的性能不劣于临床医生。只有31项(38%)研究表示需要进一步的前瞻性研究或试验。

总之,医学影像学中很少有前瞻性深度学习研究和随机试验。大多数非随机试验均无前瞻性,发生偏倚的风险较高,且偏离了现有的报告标准。大多数研究中都缺乏数据和代码的可用性,并且人类比较组通常样本很小。

附:英文原文

Title: Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies in medical imaging

Author: Myura Nagendran, Yang Chen, Christopher A Lovejoy, Anthony C Gordon, Matthieu Komorowski, Hugh Harvey, Eric J Topol, John P A Ioannidis, Gary S Collins, Mahiben Maruthappu

Issue&Volume: 2020/03/25

Abstract: Abstract

Objective To systematically examine the design, reporting standards, risk of bias, and claims of studies comparing the performance of diagnostic deep learning algorithms for medical imaging with that of expert clinicians.

Design Systematic review.

Data sources Medline, Embase, Cochrane Central Register of Controlled Trials, and the World Health Organization trial registry from 2010 to June 2019.

Eligibility criteria for selecting studies Randomised trial registrations and non-randomised studies comparing the performance of a deep learning algorithm in medical imaging with a contemporary group of one or more expert clinicians. Medical imaging has seen a growing interest in deep learning research. The main distinguishing feature of convolutional neural networks (CNNs) in deep learning is that when CNNs are fed with raw data, they develop their own representations needed for pattern recognition. The algorithm learns for itself the features of an image that are important for classification rather than being told by humans which features to use. The selected studies aimed to use medical imaging for predicting absolute risk of existing disease or classification into diagnostic groups (eg, disease or non-disease). For example, raw chest radiographs tagged with a label such as pneumothorax or no pneumothorax and the CNN learning which pixel patterns suggest pneumothorax.

Review methods Adherence to reporting standards was assessed by using CONSORT (consolidated standards of reporting trials) for randomised studies and TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) for non-randomised studies. Risk of bias was assessed by using the Cochrane risk of bias tool for randomised studies and PROBAST (prediction model risk of bias assessment tool) for non-randomised studies.

Results Only 10 records were found for deep learning randomised clinical trials, two of which have been published (with low risk of bias, except for lack of blinding, and high adherence to reporting standards) and eight are ongoing. Of 81 non-randomised clinical trials identified, only nine were prospective and just six were tested in a real world clinical setting. The median number of experts in the comparator group was only four (interquartile range 2-9). Full access to all datasets and code was severely limited (unavailable in 95% and 93% of studies, respectively). The overall risk of bias was high in 58 of 81 studies and adherence to reporting standards was suboptimal (<50% adherence for 12 of 29 TRIPOD items). 61 of 81 studies stated in their abstract that performance of artificial intelligence was at least comparable to (or better than) that of clinicians. Only 31 of 81 studies (38%) stated that further prospective studies or trials were required.

Conclusions Few prospective deep learning studies and randomised trials exist in medical imaging. Most non-randomised trials are not prospective, are at high risk of bias, and deviate from existing reporting standards. Data and code availability are lacking in most studies, and human comparator groups are often small. Future studies should diminish risk of bias, enhance real world clinical relevance, improve reporting and transparency, and appropriately temper conclusions.

DOI: 10.1136/bmj.m689

期刊信息

BMJ-British Medical Journal:《英国医学杂志》,创刊于1840年。隶属于BMJ出版集团,最新IF:27.604

官方网址:http://www.bmj.com/

投稿链接:https://mc.manuscriptcentral.com/bmj

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
城市应急指挥系统是智慧城市建设的重要组成部分,旨在提高城市对突发事件的预防和处置能力。系统背景源于自然灾害和事故灾难频发,如汶川地震和日本大地震等,这些事件造成了巨大的人员伤亡和财产损失。随着城市化进程的加快,应急信息化建设面临信息资源分散、管理标准不统一等问题,需要通过统筹管理和技术创新来解决。 系统的设计思路是通过先进的技术手段,如物联网、射频识别、卫星定位等,构建一个具有强大信息感知和通信能力的网络和平台。这将促进不同部门和层次之间的信息共享、交流和整合,提高城市资源的利用效率,满足城市对各种信息的获取和使用需求。在“十二五”期间,应急信息化工作将依托这些技术,实现动态监控、风险管理、预警以及统一指挥调度。 应急指挥系统的建设目标是实现快速有效的应对各种突发事件,保障人民生命财产安全,减少社会危害和经济损失。系统将包括预测预警、模拟演练、辅助决策、态势分析等功能,以及应急值守、预案管理、GIS应用等基本应用。此外,还包括支撑平台的建设,如接警中心、视频会议、统一通信等基础设施。 系统的实施将涉及到应急网络建设、应急指挥、视频监控、卫星通信等多个方面。通过高度集成的系统,建立统一的信息接收和处理平台,实现多渠道接入和融合指挥调度。此外,还包括应急指挥中心基础平台建设、固定和移动应急指挥通信系统建设,以及应急队伍建设,确保能够迅速响应并有效处置各类突发事件。 项目的意义在于,它不仅是提升灾害监测预报水平和预警能力的重要科技支撑,也是实现预防和减轻重大灾害和事故损失的关键。通过实施城市应急指挥系统,可以加强社会管理和公共服务,构建和谐社会,为打造平安城市提供坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值