python 常微分方程 画向量场_matlab,maple画常微分向量场.doc

本文介绍了如何使用Python来绘制常微分方程的向量场,以此来理解微分方程的解的几何特性。通过MATLAB和Maple作为辅助工具,讨论了向量场的定义、性质,并展示了如何根据向量场求解微分方程的近似解。此外,还探讨了李雅普诺夫稳定性、奇点和极限环的概念,并给出了利用向量场判断这些特性的实例。最后,提供了程序设计示例,用于生成向量场数据并绘制解曲线。
摘要由CSDN通过智能技术生成

matlab,maple画常微分向量场

作业

常微分方程向量场相关概念

1、常微分方程向量场定义

答:

设一阶微分方程 满足解的存在唯一性定理的条件。过中任一点 ,有且仅有一个解满足。称域为方程所定义的向量场。

常微分方程向量场性质

答:

性质1:解就是通过点的一条曲线(称为积分曲线),且就是该曲线上的点处的切线斜率,特别在切线斜率就是。

性质2:向量场可以用映射来表示,其中,为一个平面区域,表示由平面一点映射到一个二维向量。

性质3:若函数为上的连续函数,那么向量场也是连续的。

性质4:向量场的原函数不唯一,但是任意两个原函数之间只差一个常数。

3、利用向量场求常微分方程(组)近似解

答:

从几何上看,方程的一个解就是位于它所确定的向量场中的一条曲线,该曲线所经过的每一点都与向量场在这一点的方向相切。形象的说,解就是始终沿着向量场中的方向行进的曲线,因此,求方程满足初始值的解,就是求通过点的这样的一条曲线。

4、利用向量场研究常微分方程定性理论

答:

向量场对于求解微分方程的近似解和研究微分方程的几何性质极为重要,因为,可根据向量场的走向来近似求积分曲线,同时也可根据向量场本身的性质来研究解的性质。

李雅普诺夫稳定性

考虑方程和,现用向量场判断方程的李雅普诺夫稳定性。分别绘制其向量场如下图:

从该图中的向量场方向可以看出,其所有解都渐进稳定于直线。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值