小批量梯度下降算法步骤_机器学习算法:梯度下降算法背后的工作原理

想了解更多好玩的人工智能应用,请关注公众号“机器AI学习 数据AI挖掘”,”智能应用"菜单中包括:颜值检测、植物花卉识别、文字识别、人脸美妆等有趣的智能应用。。

4a3b5a84695502375703950376422251.png

梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。

为了便于理解,这里我们将使用只含有一个特征的线性回归来展开。此时线性回归的假设函数为:

hθ(x(i))=θ1x(i)+θ0" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">hθ(x(i))=θ1x(i)+θ0hθ(x(i))=θ1x(i)+θ0

其中,i=1,2,…,m" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">i=1,2,…,mi=1,2,…,m 表示样本数。

对应的目标函数(代价函数) 即为:

J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">J(θ0,θ1)=12mm∑i=1(hθ(x(i))−y(i))2J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2

一、批量梯度下降(Batch Gradient Descent,BGD)

批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。从数学上理解如下:

(1)对目标函数求偏导:

∇J(θ0,θ1)=1m∑i=1m(hθ(x(i))−y(i))xj(i)" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">∇J(θ0,θ1)=1mm∑i=1(hθ(x(i))−y(i))x(i)j∇J(θ0,θ1)=1m∑i=1m(hθ(x(i))−y(i))xj(i)

其中,i=1,2,…,m" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">i=1,2,…,mi=1,2,…,m 表示样本数,j=0,1" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">j=0,1j=0,1 表示特征数。这里我们使用了偏置项 x0(i)=1" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">x(i)0=1x0(i)=1。

(2)每次迭代对参数进行更新:

θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">θj:=θj−α1mm∑i=1(hθ(x(i))−y(i))x(i)jθj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)

注意这里更新时存在一个求和函数,即为对所有样本进行计算处理,可与下文SGD法进行比较。

伪代码形式为:

repeat{θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">θj:=θj−α1m∑mi=1(hθ(x(i))−y(i))x(i)jθj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)
   (for j=0,1)
}

优点:

  • 一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行。

  • 由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优。

缺点:

  • 当样本数目 m" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 16.66px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">mm 很大时,每迭代一步都需要对所有样本计算,训练过程会很慢。

  • 从迭代的次数上来看,BGD迭代的次数相对较少。

二、随机梯度下降(Stochastic Gradient Descent,SGD)

随机梯度下降法不同于批量梯度下降,随机梯度下降是每次迭代使用一个样本来对参数进行更新。使得训练速度加快。

对于一个样本的目标函数为:

J(θ0,θ1)=12(hθ(x(i))−y(i))2" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">J(θ0,θ1)=12(hθ(x(i))−y(i))2J(θ0,θ1)=12(hθ(x(i))−y(i))2

(1)对目标函数求偏导:

∇J(θ0,θ1)=(hθ(x(i))−y(i))xj(i)" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">∇J(θ0,θ1)=(hθ(x(i))−y(i))x(i)j∇J(θ0,θ1)=(hθ(x(i))−y(i))xj(i)

(2)参数更新:

θj:=θj−α(hθ(x(i))−y(i))xj(i)" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">θj:=θj−α(hθ(x(i))−y(i))x(i)jθj:=θj−α(hθ(x(i))−y(i))xj(i)

注意,这里不再有求和符号

伪代码形式为:

repeat{
   for i=1,2,…m{θj:=θj−α(hθ(x(i))−y(i))xj(i)" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">θj:=θj−α(hθ(x(i))−y(i))x(i)jθj:=θj−α(hθ(x(i))−y(i))xj(i)
     (for j=0,1)
   }
}

优点:

  • 由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据上的损失函数,这样每一轮参数的更新速度大大加快。

缺点:

  • 准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛。

  • 可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势。

  • 不易于并行实现。

三、小批量梯度下降(Mini-Batch Gradient Descent, MBGD)

小批量梯度下降,是对批量梯度下降以及随机梯度下降的一个折中办法。其思想是:每次迭代 使用 batch_size 个样本来对参数进行更新。

这里我们假设 batchsize=10" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">batchsize=10batchsize=10 ,样本数 m" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">mm =1000。

伪代码形式为:

repeat{
    for i=1,11,21,31,…,991{θj:=θj−α110∑k=ii+9(hθ(x(k))−y(k))xj(k)" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">θj:=θj−α110∑i+9k=i(hθ(x(k))−y(k))x(k)jθj:=θj−α110∑k=ii+9(hθ(x(k))−y(k))xj(k)
    (for j =0,1)
    }
}

优点:

  • 通过矩阵运算,每次在一个batch上优化神经网络参数并不会比单个数据慢太多。

  • 每次使用一个batch可以大大减小收敛所需要的迭代次数,同时可以使收敛到的结果更加接近梯度下降的效果。

  • 可实现并行化。

缺点:

  • batchsize" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 16.66px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">batchsizebatchsize 的不当选择可能会带来一些问题。

batchsize" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-weight: normal; font-size: 19.04px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">batchsizebatchsize 的选择带来的影响:

  • 在合理地范围内,增大 batchsize" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 16.66px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">batchsizebatchsize 的好处

    • 内存利用率提高了,大矩阵乘法的并行化效率提高。

    • 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。

    • 在一定范围内,一般来说 batchsize" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 16.66px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">batchsizebatchsize 越大,其确定的下降方向越准,引起训练震荡越小。

  • 盲目增大batch_size的坏处:

    • 内存利用率提高了,但是内存容量可能撑不住了。

    • 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。

    • batchsize" role="presentation" style=" box-sizing: border-box; display: inline-block; line-height: 0; font-size: 16.66px; overflow-wrap: normal; word-spacing: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; border-color: initial; padding-top: 1px; padding-bottom: 1px; ">batchsizebatchsize 增大到一定程度,其确定的下降方向已经基本不再变化。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值