1 loss是什么_北大曹健Tensorflow2.1课程笔记整理

这篇博客整理了TensorFlow 2.1的基础知识,包括张量的使用、创建与操作,梯度计算,模型训练中的学习率设置和正则化,以及数据导入和保存模型的方法。适合初学者了解TensorFlow的基本概念和操作。
摘要由CSDN通过智能技术生成

6c30aa458fef5a8b4b44113e1f458781.png

Tensorflow 2.1 入门首推,曹老师讲解清晰,知识面覆盖齐全,配合视频食用十分舒畅。

课程网址:

人工智能实践:Tensorflow笔记_北京大学_中国大学MOOC(慕课)​www.icourse163.org
819f4c210048f1e7104a9be7842d2f19.png
B站视频教程​www.bilibili.com

我对其中用的比较多的部分做了整理,也参考官网文档做了一些补充。相关代码均为课程内容,仅用作学习,侵删。

基本知识

张量

为什么要在TF2中使用张量?

tensorflow中的数据类型

  • np.array :question:
  • tf.constant()
  • tf.Variable() 将变量标记为“可训练”
array = np.array([1,2,3,4])
constant = tf.constant(a)
c = tf.Variable(array)
d = tf.Variable(constant)

print(array,constant)
print(array == constant)
print(c,d)
print(c == d)

# 打印结果:
# [1 2 3 4] tf.Tensor([1 2 3 4], shape=(4,), dtype=int64)
# tf.Tensor([ True  True  True  True], shape=(4,), dtype=bool)
# <tf.Variable 'Variable:0' shape=(4,) dtype=int64, numpy=array([1, 2, 3, 4])> <tf.Variable 'Variable:0' shape=(4,) dtype=int64, numpy=array([1, 2, 3, 4])>
# tf.Tensor([ True  True  True  True], shape=(4,), dtype=bool)

结论:np.array和tf.constant没有区别?

张量的表示方法

张量的维数判定

等号后面有几个[,就是几维张量。

scalar = 1
vector = [1,2,3]
matrix = [[1,2,3],[4,5,6]]
tensor = [[[...

维度的表示

bd7963bc261aa629d624dc590cc3251c.png
没到知乎的表格输入啊...

axis的含义

对于张量x, shape = (n,m,j,k),对应的axis就是(axis=0,axis=1,axis=2,axis=3)

张量的索引

x[m,n,p] # 从最外部的方框逐渐缩小到固定元素

张量的创建:

指定内容 tf.constant / numpy转化 tf. convert_to_tensor / 特殊结构 tf.zeros等

# tf.constant(张量内容,dtype=数据类型(可选))
import tensorflowas tfa=tf.constant([1,5],dtype=tf.int64)
print(a)
print(a.dtype)
print(a.shape)

# tf. convert_to_tensor(数据名,dtype=数据类型(可选))
import tensorflowas tf
import numpyas np
a = np.arange(0, 5)
b = tf.convert_to_tensor( a, dtype=tf.int64 )

# 创建全为0的张量 tf. zeros(维度)
# 创建全为1的张量 tf. ones(维度)
# 创建全为指定值的张量 tf. fill(维度,指定值)

# 生成正态分布的随机数 tf. random.normal(维度,mean=均值,stddev=标准差)
# 生成均匀分布随机数[ minval, maxval) tf. random. uniform(维度,minval=最小值,maxval=最大值)

张量的操作函数

# 计算张量维度上元素的最小值 tf.reduce_min(张量名, axis=操作轴))
# 计算张量维度上元素的最大值 tf.reduce_max(张量名, axis=操作轴))

指定axis的含义:该axis上的元素作为查找目标/取平均值对象,遍历其他axis上的所有值,最终结果的结构是去除该axis后的值。比如a的shape是(2,3,4),对axis = 1运算,最终结果的shape就是(2,4)

# 同理有reduce_mean / reduce_sum

数学运算

对应元素的四则运算:tf.add,tf.subtract,tf.multiply,tf.divide

平方、次方与开方:tf.square,tf.pow,tf.sqrt

矩阵乘:tf.matmul

常用操作

梯度计算

with结构记录计算过程,gradient求出张量的梯度

# with tf.GradientTape( ) as tape:
# 若干个计算过程
# grad=tape.gradient(函数,对谁求导)

with tf.GradientTape( ) as tape:
    w = tf.Variable(tf.constant(3.0))
    loss = tf.pow(w,2) #loss=w2 loss’=2w
grad = tape.gradient(loss,w)
print(grad)

梯度计算的注意事项

  1. 参与梯度计算的数据类型需要是float
  2. 计算梯度的时候可以直接写+-*/,但不能写^

常用函数

tf.one_hot(待转换数据, depth=几分类)

classes = 3
labels = tf.constant([1,0,2]) #
输入的元素值最小为0,最大为2
output = tf.one_hot( labels, depth=classes )
print(output)
# 运行结果:
# [[0. 1. 0.]
# [1. 0. 0.]
# [0. 0. 1.]], shape=(3, 3), dtype=float32)

data = tf.data.Dataset.from_tensor_slices((输入特征, 标签)) 切分传入张量的第一维度,生成输入特征/标签对,构建数据集

train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)

自减函数 assign_sub

w.assign_sub(1)

模块处理

基本流程

import
train / test data
model.sequential
model.compile
model.fit
model.summary

数据导入

控制batch

  1. model.fit中设置batch_size
  2. 底层控制

训练

学习率设置

指数衰减学习率 = 初始学习率* 学习率衰减率(当前轮数/ 多少轮衰减一次)

正则化缓解过拟合

loss = loss( y与y_ )+ REGULARIZER * loss(w)

模型的保存与载入

自动进行参数的保存与载入

checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path) # 如果参数存在则读取参数

# 设置回调函数(也就是保存的选项)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)
# 添加callbacks就会进行参数保存
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1, callbacks=[cp_callback])

手动进行参数的保存和载入

# 保存权重
model.save_weights('./checkpoints/my_checkpoint')

# 创建模型实例
model = create_model()

# Restore the weights
model.load_weights('./checkpoints/my_checkpoint')

# Evaluate the model
loss,acc = model.evaluate(test_images,  test_labels, verbose=2)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))

训练结果的保存

通过history = model.fit记录训练结果

# history=model.fit(训练集数据, 训练集标签,batch_size=, epochs=, validation_split=用作测试数据的比例,validation_data=测试集, validation_freq=测试频率)

# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

history.history内部也就只有这4个list

实例程序

TF底层实现

# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np
import time  ##1##

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

##########################################################################
m_w, m_b = 0, 0
v_w, v_b = 0, 0
beta1, beta2 = 0.9, 0.999
delta_w, delta_b = 0, 0
global_step = 0
##########################################################################

# 训练部分
now_time = time.time()  ##2##
for epoch in range(epoch):  # 数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别的循环 ,每个step循环一个batch
 ##########################################################################       
        global_step += 1
 ##########################################################################       
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

##########################################################################
 # adam
        m_w = beta1 * m_w + (1 - beta1) * grads[0]
        m_b = beta1 * m_b + (1 - beta1) * grads[1]
        v_w = beta2 * v_w + (1 - beta2) * tf.square(grads[0])
        v_b = beta2 * v_b + (1 - beta2) * tf.square(grads[1])

        m_w_correction = m_w / (1 - tf.pow(beta1, int(global_step)))
        m_b_correction = m_b / (1 - tf.pow(beta1, int(global_step)))
        v_w_correction = v_w / (1 - tf.pow(beta2, int(global_step)))
        v_b_correction = v_b / (1 - tf.pow(beta2, int(global_step)))

        w1.assign_sub(lr * m_w_correction / tf.sqrt(v_w_correction))
        b1.assign_sub(lr * m_b_correction / tf.sqrt(v_b_correction))
##########################################################################

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all / 4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")
total_time = time.time() - now_time  ##3##
print("total_time", total_time)  ##4##

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

# 请将loss曲线、ACC曲线、total_time记录到 class2优化器对比.docx  对比各优化器收敛情况

Keras

import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras import Model

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


class MnistModel(Model):
    def __init__(self):
        super(MnistModel, self).__init__()
        self.flatten = Flatten()
        self.d1 = Dense(128, activation='relu')
        self.d2 = Dense(10, activation='softmax')

    def call(self, x):
        x = self.flatten(x)
        x = self.d1(x)
        y = self.d2(x)
        return y


model = MnistModel()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

如果有同学想下载对应的markdown文档,链接如下:

链接:https://pan.baidu.com/s/1Iorp5HdBTuLUWnWeP6TQuw

提取码:1xh3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值