* 北京邮电大学电子工程学院 * 例3.7 设{X(t),t≥0}是具有均值函数 的非齐次泊松过程, {Wn,n≥1}是其相应的等待时间序列。求Wn的概率密度。 解:当t>0时, 因此 对上式求导,得 * 北京邮电大学电子工程学院 * 第四节 复合泊松过程 定义3.5 设{N(t),t≥0} 是强度为?的泊松过程,{Yk,k=1,2,…}是一列独立同分布随机变量,且与{N(t),t≥0} 独立,令 则称{X(t),t≥0}为复合泊松过程。 例3.8 设N(t)是在时间段(0,t]内来到某商店的顾客人数, {N(t),t≥0} 是泊松过程。若Yk是第k个顾客在商店所花的钱数,则{Yk,k=1,2,…}是一列独立同分布随机变量序列,且与{N(t),t≥0} 独立。记X(t)为该商店在内的营业额,则X(t)是一个复合泊松过程。 * 北京邮电大学电子工程学院 * 定理3.6 设 是复合泊松过程,则 (1) {X(t),t≥0}是独立增量过程; (2) X(t)的特征函数 ,其中gY(u)是随机变量Y1的特征函数;?是事件的到达率; (3) 若 ,则 。 证明略。 * 北京邮电大学电子工程学院 * * 北京邮电大学电子工程学院 * 初等概率论研究的主要对象是一个或有限个随机变量(或随机向量),但是,自然界和人类社会的许多现象不能用一个或有限个随机变量来刻画,比如我们要研究一些随机现象的变化过程,这时就必须考虑无穷个随机变量,这时,我们必须用一族随机变量才能刻画这种随机现象的全部统计规律性,通常我们称随机变量族为随机过程。 讨论计数过程的平稳增量性和独立增量性。 条件(1)表示计数是从0时开始。条件(2)可以通过对过程所表达的实际含义去判断。条件(3)很难判断,下面介绍另外一个定义。 复习指数分布的定义 定理3.2的结论是在平稳独立增量过程的假设前提下得到的,该假设的概率意义是指过程在任一时刻都从头开始,即从任何时刻起过程独立于先前已发生的一切,且与原过程的分布完全一样。 * 对于非齐次泊松过程,其概率分布由下面的定理给出。 北京邮电大学电子工程学院 北京邮电大学电子工程学院 * 北京邮电大学电子工程学院 * 第三章 泊松过程 掌握泊松过程的基本概念 掌握泊松过程的数字特征 掌握泊松过程时间间隔和等待时间的分布 掌握泊松过程达到时间的条件分布 了解非齐次泊松过程和复合泊松过程 * 北京邮电大学电子工程学院 * 第一节 泊松过程的定义 例3.1 电话交换台在时间段[0,t]内接到的呼叫次数是与t有关的随机变量X(t)。对于固定的t,X(t)是取非负整数的随机变量。由于在不相重叠的时间间隔内收到的呼叫数是相互独立的,故{X(t), t≥0}是独立增量过程。 * 北京邮电大学电子工程学院 * 定义3.1.称随机过程 {N(t), t≥0 }为计数过程,若N(t)表示[0,t]已发生的“事件A”的总数,且N(t)满足下列条件: (1) N(t)≥0; (2) N(t)取整数值; (3)若s0)的泊松过程,若它满足下列条件: (1) X(0)=0; (2)X(t)是独立增量过程; (3)在任一长度为t的区间中,事件A发生的次数服从参数为?t的泊松分布,即对任意s, t ≥0 ,有 从条件(3)知泊松过程是平稳增量过程且E[X(t)]=?t。由于 表示单位时间内事件A发生的平均次数,故称?为此过程的速率或强度。 泊松过程是计数过程的最重要类型之一: * 北京邮电大学电子工程学院 * * 北京邮电大学电子工程学院 * 定义3.3 称计数过程{X(t), t≥0 }为具有参数?>0的泊松过程,若它满足下列条件: (1) X(0)=0; (2) X(t)是独立、平稳增量过程; (3) X(t)满足下列条件: (h>0) 定义中的条件(3)说明,在充分小的时间间隔内,最多有一个事件发生,而不能有两个或两个以上事件同时发生。 可以证明两个定义是等价的。 * 北京邮电大学电子工程学院 * 下证定义3.3蕴含定义3.2。 根据定义3.3之(2)和(3)有 * 北京邮电大学电子工程学
指数随机变量 泊松过程跳_泊松过程精选.ppt
最新推荐文章于 2022-01-02 21:35:59 发布