人工智能的三个分支: 神经计算、符号计算、行为计算
符号计算的要义在于:知识可用符号表示,而且这种表达具有充分性和可利用性,符号能进行计算即推理机的自动推理。在神经网络发展低潮的上个世纪,符号计算这个支脉是人工智能的主流。
例如:知识:人总是要死的,John是人;
表达:
(形式化的表达)
推理: (即John是要死的)(利用归结原理)
符号计算大体就是做上述的事情,不过上述是最简洁的例子,建立知识库,然后进行逻辑推理。
语义网络:一种知识的表达方式。(有与其配套的推理)
构建知识库真正用的是:来自数理逻辑的知识形式化方法。
这里的知识点主要归于离散数学的逻辑:一阶谓词逻辑、简单析取式、子句、量词,还有一些等价公式、永真公式。
目的就是将知识进行形式上的统一。
在之后关于符号 计算的就是推理的形式化:归结原理。相关的名词有子句归结树(也称反演树)。
----------------------------结尾终结---------------------------------