人工智能--符号计算--笔记

人工智能的三个分支: 神经计算、符号计算、行为计算

        符号计算的要义在于:知识可用符号表示,而且这种表达具有充分性和可利用性,符号能进行计算即推理机的自动推理。在神经网络发展低潮的上个世纪,符号计算这个支脉是人工智能的主流。   

        例如:知识:人总是要死的,John是人;

                  表达\forall x \{Huaman\(x) \rightarrow Mortal(x) \}     Human(John)(形式化的表达)

                  推理Mortal(John)   (即John是要死的)(利用归结原理)

        符号计算大体就是做上述的事情,不过上述是最简洁的例子,建立知识库,然后进行逻辑推理。

 

        语义网络:一种知识的表达方式。(有与其配套的推理)

        构建知识库真正用的是:来自数理逻辑的知识形式化方法

        这里的知识点主要归于离散数学的逻辑:一阶谓词逻辑、简单析取式、子句、量词,还有一些等价公式、永真公式。

        目的就是将知识进行形式上的统一

        在之后关于符号 计算的就是推理的形式化:归结原理。相关的名词有子句归结树(也称反演树)。

  

----------------------------结尾终结---------------------------------

 

 

 

 

 

 

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试