神经符号计算(Neural-symbolic computing, NeSy)是多年来人工智能(AI)研究的一个活跃领域,它追求认知的符号范式和统计范式的融合。由于NeSy有望将符号表示的推理和可解释性的优势与神经网络中的强大学习相协调,它可能会成为下一代人工智能的催化剂。
符号主义(知识驱动):符号主义认为表征世界上事物的符号是人类智能的基本单位,认知过程可以通过对符号的操作来完成。优点:只需要少量的输入样本,使用强大的描述语言进行知识表示,具有清晰的可解释性。缺点:这种基于规则的、自上向下的策略需要大量的手工调优,缺乏真正的学习,并且手工规则无法容忍模棱两可和嘈杂的数据。
连接主义(数据驱动):典型代表是深度神经网络。优点:容错,学习连续嵌入向量,并通过离散符号向量比较,从数据中学习统计模式,具有学习和泛华的能力。缺点:不可解释性,数据量大决策难以理解。
神经符号推理:寻求两种方法的结合。从数据和知识中进行推理。
神经符号集成类型:论文奖神经符号集成方法归成了六类。
类型1:
Symbolic Neuro Symbolic 符号作为输入输出,符号通过向量化转换为输入向量,通过神经网络获得输出向量,通过符号化转为符号。

类型2:Symbolic [Neuro] 混合但整体的符号系统,其中神经模块在内部用作符号问题解决器中的子程序。
类型3:Neuro|Symbolic 也是一个混合系统,其中神经和符号部分在一个整体程序中专注于不同但互补的任务。3型和2型的不同之处在于,神经部分是协同程序,而不是子程序。
类型4:Neuro: Symbolic → Neuro 符号规则/知识被编译到神经网络的架构或训练机制中 ,比如知识图片的向量表示。
类型5:将符号知识转化为神经网络的损失函数限制。
类型6:Neuro[Symbolic] 最有潜力将逻辑和神经人工智能的优势结合起来”,是一种完全集成的系统,直接将符号推理引擎嵌入到神经引擎中。有一些方法通过张量演算模仿逻辑推理,通过神经网络学习符号运算的执行[133]-[135],在一定程度上可归为第6类,但其逻辑推理能力仍相对较弱。
[133] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou, “Neural
logic machines,” in
Proc. Int. Conf. Learn. Representations
, 2018.
[134] P.-W. Wang, P. Donti, B. Wilder, and Z. Kolter, “Satnet: Bridging
deep learning and logical reasoning using a differentiable satis-
fifiability solver,” in
Proc. ACM Int. Conf. Mach. Learn.
, 2019, pp.
6545–6554.
[135] J. Cai, R. Shin, and D. Song, “Making neural programming
architectures generalize via recursion,” in
Proc. Int. Conf. Learn.
Representations
, 2017.