我的小程序:

举个例子:
我们习惯处理的集合是一种“干脆的”集合,成员要么属于这个集合(真或1),要么不属于(假或0)。例如,用Z表示所有人员的集合,我们想要定义一个“年轻人”的子集A。我们需要一个隶属度函数q,它对Z中每一个成员z赋值0或1。另外我们需要一个阈值,等于或小于该阈值的人考虑为年轻人,大于则考虑为非年轻人。下图用20岁的阈值给出了这一“干脆的”集合:
这样一个“干脆的”集合的问题或者说是不合理的地方是:年龄20岁是年轻人,只要20岁零1秒就不再是年轻人。我们希望的是年轻和非年轻之间能渐进的过渡。下图给出了另一种划分可能性:
上图允许有年轻的程度,如一个50%年轻的人位于斜坡的中间,曲线的斜率引入什么是“年轻”的更加模糊的概念。
定义:令Z为元素集,z表示Z的一类元素,即Z = {z}。Z中的模糊集合A由隶属度函数表征,它是与Z的元素相关的在区间[0,1]内的一个实数。
在z处的值表示A中z的隶属度等级,
= 1的所有z都是集合的完全成员,
=0的所有z都不是集合的成员,而
的值介于0和1之间的所有z是集合的部分成员。因此,模糊集合是一个由z值和相应的隶属度函数组成的序对:
年龄限制为整数年时,根据上面第二幅图,则有:
A = {(1,1),(2,1),(3,1),...,(20,1),(21,0.9),(22,0.8),...,(25,0.5),(26,0.4),...,(29,0.1)}
空集:当且仅当Z中的隶属度函数等于0。
相等:模糊集合A和B相等,当且仅当对所有的有
。
补集:由或NOT(A)表示模糊集合A的补集,定义为其隶属度函数是
的集合。
子集:模糊集合A是模糊集合B的子集,当且仅当对于所有的,
。
并集:两个模糊集合A和B的并集,具有隶属度函数,表示为
或A OR B。
交集:两个模糊集合A和B的交集,具有隶属度函数,表示为
或A AND B。
交并补的定义可用如下的图表示:
注:模糊逻辑和概率均在区间[0,1]上,但有明显的区别。以最开始的例子为例,概率的说法可能是“一个人年轻的可能性是50%”,而模糊逻辑的说法可能是“一个人在年轻人集合中的隶属度等级是0.5”。第一种说法中,我们有50%的机会知道这个人在不在年轻人的集合里。第二种说法说的是一个人的年轻程度是0.5,或者说这是一个“平均的”年轻人:不是真年轻,但也不是不年轻。模糊逻辑完全不是概率,它仅处理一个集合中隶属度等级。模糊逻辑在由含混和不精确而不是随机性表征的应用中找到了用途。
一些常用的隶属度函数:

参考资料:冈萨雷斯《数字图像处理》