机器学习--损失函数常用的凸优化算法

本文详细介绍了无约束和有约束条件下机器学习损失函数的凸优化算法,包括牛顿法、梯度下降法、坐标轴下降法以及拉格朗日乘子法和KKT条件。针对梯度下降法,探讨了学习率、初始值选择和不同类型的梯度下降法,如批量、随机和小批量。同时,对比了坐标轴下降法与梯度下降法的联系与区别。对于有约束条件,重点讲解了拉格朗日乘子法及其在实际问题中的应用。
摘要由CSDN通过智能技术生成

目录

一 无约束条件下损失函数的凸优化算法

1 牛顿法(不推荐使用)

1)函数为可微凸函数,已知某点的函数值,求解该点的的方法

2)算法流程

2 梯度下降法

1)算法流程

2)算法的调优策略

3)算法不同类型(假定m个样本)

3 坐标轴下降法

1)算法流程

2)坐标轴下降法与梯度下降法的联系与区别

二 有约束条件下(等式约束与不等式约束)损失函数的凸优化算法

1 拉格朗日乘子法

1)算法步骤

2 泛拉格朗日乘子法(KKT条件)

1)KKT条件

2)泛拉格朗日乘子法


一 无约束条件下损失函数的凸优化算法

1 牛顿法(不推荐使用)

1)函数为可微凸函数,已知某点的函数值y,求解该点的x的方法

\left\{\begin{matrix} y_{1}=f(x_{1}),{y}'_{1}\neq 0 \\ x_{1}=?\end{matrix}\right.

2)算法流程

第一步:令x=x_{0}

x=x_{0}\Rightarrow\left\{\begin{matrix} y=y_{0}=f(x_{0})\\ {y}'_{0}={f}'(x_{0}) \neq 0\end{matrix}\right.

第二步:计算\Delta y

\Delta y=y_{1}-y_{0}

第三步:计算\Delta x

\Delta x=\frac{\Delta y}{​{y}'_{0}}

第四步:更新x_{0}

x_{0}=x_{0}+\Delta x

第五步:重复上述步骤(迭代),直至\Delta x\rightarrow 0

2 梯度下降法

1)算法流程

第一步:假定函数y=f(\theta )\theta为n元自变量

第二步:初始化\theta

第三步:计算负梯度\bigtriangledown f(\theta )

第四步:更新\theta

\theta=\theta -\alpha \bigtriangledown f(\theta )

第五步:重复三、四步骤(迭代),直至f(x,\theta )\overset{\theta }{\rightarrow} minf(x,\theta )

注意:

  • \alpha是学习率:控
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值