消费者人群画像 python_2019数字中国创新大赛 消费者人群画像 信用智能评分

本文分享了作者在2019数字中国创新大赛中,关于消费者人群画像和信用智能评分项目的参赛经验。讨论了数据处理、特征工程、模型选择以及模型融合策略,包括lightGBM、xgboost等模型,并强调了尝试和探索的重要性。
摘要由CSDN通过智能技术生成

DCIC-2019-Credit-intelligence-score-2th-Place

2019数字中国创新大赛 消费者人群画像 亚军

赛题链接:https://www.datafountain.cn/competitions/337

首先非常感谢队友neil和gotcha几个月的合作,最终拿了几个周冠军和线上第一的成绩,最终答辩第二,再接再厉

感想

NLP队伍不完整代码(只包含我这部分,后面会链接到队友gotcha的代码)。

关于此次赛题,数据上来说可挖掘潜力并不是那么大,因此各个队伍能挖掘到的特征基本都很相似

于是只能拼数据,拼模型,拼骚操作了

赛题理解与特征工程

本次赛题有些数据已经被主办方处理过,有些缺失值被用0来填充,导致一些特定的数据难以分辨是空值还是0值, 还有一些数据被主办方取整和分箱了,因此适当处理源数据会有一定提升

对于特征工程本团队主要构建了以下特征:

前五个月消费总费用 = 6 * 近六个月消费总费用 - 当月费用

当月费用 - 前六个月平均费用

当月费用 - 前五个月消费总费用/5

入网月份 = 网龄 mod 12

布尔型特征相加

年龄、网龄分箱

是否998折

count_最近一次缴费金额

count_当月总费用

count_前六个月平均费用

count_费用差

count_(当月总费用,前六个月平均费用)

模型

对于模型本团队采用的模型有lightGBM,xgboost,catboost,GB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值