消费者人群画像—信用智能评分 比赛回顾

本文是作者参加'消费者人群画像—信用智能评分'比赛的回顾,介绍了数据分析、模型选择、特征工程和模型提升的过程。作者从pandas基础开始,尝试了随机森林、SVM、Adaboost等模型,最终采用LightGBM和XGBoost,并学习了特征工程和模型融合技巧,如MSE+MAE结合、交叉验证。虽然成绩一般,但作者在实践中收获了宝贵的经验。
摘要由CSDN通过智能技术生成

一、前言

这个比赛是本人参加的第一个算法比赛,纯属学习,也算是体验了一下算法比赛是怎样一个流程。当然了成绩是很一般的,而且每每成绩有所提升总是因为一些大佬又提供了新的思路与代码。不过在这种实践中也学习了很多之前没了解过的知识,开了眼界。也要感谢实验室带我的各位师兄,体验不错,虽然很菜,下次还来。

二、比赛介绍

“消费者人群画像—信用智能评分”是由中国移动福建公司&新大陆科技集团举办的赛事,由中国移动福建公司提供包括客户的各类通信支出、欠费情况、出行情况、消费场所等丰富的多维度数据。参赛者通过分析建模,运用机器学习和深度学习算法,准确评估用户消费信用分值。

赛题链接:https://www.datafountain.cn/competitions/337/details

三、比赛回顾

目前似乎还没有排名比较靠前的开源代码,那我就简单梳理一下这段时间来个人的学习历程,顺便整理学习资料,做一做总结。

1、数据分析

在确定参加这个比赛之后的第一件事便是学习python中的pandas模块。

pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。</

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值