极限是高等数学上册中的一大难点,花样繁多的计算思路和强大的py能力让他能和任何一章毫无破绽的结合。
马上就要期末考试了,最近在复习的时候发现有很多的极限又不会算了,因此在这里总结记录一下我的学习心得,也希望能对你有所帮助。
(P.S.本来想一次整完,整着整着发现这是个天坑,所以就先把本章的知识整出来了,其他章的慢慢做吧。。)
一、有理函数的分式形式:
理论依据来自这个公式
直接考当然简单,但题目往往会变着花儿出题:
1)将无穷的符号删掉:
不管是什么题,如果求极限时出现无穷,直接倒代换就行了,不用想太多。只要考虑倒代换后的0的正负。
删掉符号后记得用绝对值处理!
(当然含有根号的函数也可以有理化处理,不再赘述。)
2)与数列结合:
与数列结合时,数列会默认n>0!!,因此极限一定存在!
(血的教训555)
3)在形式上下文章:
通常出现的形式为:
。遇到这种题,不要洛必达,直接“抓大放小”
二、两个重要极限和等价无穷小: