二阶偏微分方程组 龙格库塔法_数值方法(MATLAB版)(原书第3版)[Numerical Methods Using MATLAB,Third Edition]pdf...

摘要

本书特点

强大的图形表达

宽泛的计算方法

重点科学领域的重要算法

大量可运行的实例

数值方法(MATLAB版)(原书第3版)[Numerical Methods Using MATLAB,Third Edition] 内容简介

这本全面的参考资料针对所有科学与工程领域,提供了大量有用且重要的数值算法。这些算法以MATLAB函数的形式实现,可以编写脚本用这些函数来解决特定的问题。大多数结果通过强大多样的图形工具输出,以帮助学生、教师和研究人员理解和分析特定的结果。本书给出了大量可运行的实例,以及习题和部分习题解答,说明如何利用数值方法解决生物科学、混沌、优化、工程和众多科学领域中的应用问题。

数值方法(MATLAB版)(原书第3版)[Numerical Methods Using MATLAB,Third Edition] 目录

第1章 MATLAB简介

1.1 MATLAB软件包

1.2 MATLAB中的矩阵和矩阵运算

1.3 操作矩阵的元素

1.4 转置矩阵

1.5 特殊矩阵

1.6 用给定元素值生成矩阵和向量

1.7 矩阵函数

1.8 用MATLAB运算符“\”做矩阵除法

1.9 逐元素运算

1.10 标量运算及函数

1.11 字符串变量

1.12 MATLAB中的输入/输出

1.13 MATLAB中的图形操作

1.14 三维绘图

1.15 操作图形——Handle Graphics

1.16 MATLAB脚本

1.17 MATLAB中的用户自定义函数

1.18 MATLAB中的数据结构

1.19 编辑MATLAB脚本

1.20 MATLAB中的陷阱

1.21 MATLAB中的快速计算

习题

第2章 线性方程组和特征系统

2.1 引言

2.2 线性方程组

2.3 求解Ax= b的运算符“\”和“/”

2.4 解的精度与病态性

2.5 初等行变换

2.6 用高斯消元法求解Ax= b

2.7 LU分解

2.8 楚列斯基分解

2.9 QR分解

2.10 奇异值分解

2.11 伪逆

2.12 超定和欠定方程组

2.13 迭代法

2.14 稀疏矩阵

2.15 特征值问题

2.16 求解特征值问题的迭代法

2.17 MATLAB函数eig

2.18 小结

习题

第3章 非线性方程组的解

3.1 引言

3.2 非线性方程解的性质

3.3 二分法

3.4 迭代或不动点法

3.5 迭代法的收敛性

3.6 收敛和混沌的范围

3.7 牛顿法

3.8 施罗德法

3.9 数值问题

3.10 MATLAB函数f zero和对比研究

3.11 求多项式所有根的方法

3.12 求解非线性方程组

3.13 求解非线性方程组的布罗伊登法

3.14 比较牛顿法和布罗伊登法

3.15 小结

习题

第4章 微分和积分

4.1 引言

4.2 数值微分

4.3 数值积分

4.4 辛普森公式

4.5 牛顿-科茨公式

4.6 龙贝格积分

4.7 高斯积分

4.8 无穷限的积分

4.9 高斯-切比雪夫公式

4.10 高斯-洛巴托积分

4.11 菲隆正弦和余弦公式

4.12 积分计算中的问题

4.13 测试积分

4.14 累次积分

4.15 MATLAB函数做二重和三重积分

4.16 小结

习题

第5章 微分方程的解

5.1 引言

5.2 欧拉法

5.3 稳定性问题

5.4 梯形法

5.5 龙格-库塔法

5.6 预测-校正法

5.7 汉明法和误差估计的应用

5.8 微分方程中误差的传播

5.9 特殊数值方法的稳定性

5.10 联立的微分方程组

5.11 洛伦兹方程组

5.12 捕食者-猎物问题

5.13 微分方程应用于神经网络

5.14 高阶微分方程

5.15 刚性方程

5.16 特殊方法

5.17 外插法

5.18 小结

习题

第6章 边值问题

6.1 二阶偏微分方程的分类

6.2 试射法

6.3 有限差分法

6.4 两点边值问题

6.5 抛物偏微分方程

6.6 双曲偏微分方程

6.7 椭圆偏微分方程

6.8 小结

习题

第7章 用函数拟合数据

7.1 引言

7.2 多项式插值

7.3 样条函数内插

7.4 离散数据的傅里叶分析

7.5 多重回归:最小二乘原则

7.6 模型改进的诊断

7.7 残差分析

7.8 多项式回归

7.9 用一般函数拟合数据

7.10 非线性最小二乘回归

7.11 变换数据

7.12 小结

习题

第8章 优化方法

8.1 引言

8.2 线性规划问题

8.3 单变量函数的优化

8.4 共轭梯度法

8.5 莫勒缩放共轭梯度法

8.6 共轭梯度法解线性方程组

8.7 遗传算法

8.8 连续遗传算法

8.9 模拟退火

8.10 带约束的非线性优化

8.11 顺序无约束极小化方法

8.12 小结

习题

第9章 符号工具箱的应用

9.1 符号工具箱的介绍

9.2 符号变量和表达式

9.3 符号计算中的变量精度计算

9.4 级数展开及求和

9.5 符号矩阵的操作

9.6 符号法求解方程

9.7 特殊函数

9.8 符号微分

9.9 符号偏微分

9.10 符号积分

9.11 常微分方程组的符号解

9.12 拉普拉斯变换

9.13 Z-变换

9.14 傅里叶变换法

9.15 符号和数值处理的结合

9.16 小结

习题

附录A矩阵代数

附录B误差分析

部分习题解答

参考文献

索引

数值方法(MATLAB版)(原书第3版)[Numerical Methods Using MATLAB,Third Edition] 精彩文摘

1.2 MATLAB中的矩阵和矩阵运算

矩阵是MATLAB的基础,附录A提供了一些宽泛简单的介绍.MATLAB中矩阵的名称必须以字母开头,后面可以是字母或数字的任意组合,可以是大写或小写字母.请注意本书中用特殊字体来表示MATLAB的语句和输出,例如disp.

43edb9f3b1e053e2a08277b3b6cc087e.png

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页