好的,这是一个简单的 BERT 模型结构的 Python 代码:
import transformers# 使用 transformers 库中的 BertModel 类初始化模型
model = transformers.BertModel.from_pretrained('bert-base-uncased')
# 将输入数据转换为张量
input_ids = torch.tensor(input_ids).unsqueeze(0) # 添加一维,形状为 (batch_size, sequence_length)
attention_mask = torch.tensor(attention_mask).unsqueeze(0) # 添加一维,形状为 (batch_size, sequence_length)
# 将输入传递给 BERT 模型,并获取输出
output = model(input_ids, attention_mask=attention_mask)
# 输出的第一个元素是隐藏层的输出,形状为 (batch_size, sequence_length, hidden_size)
# 输出的第二个元素是每个位置的注意力权重,形状为 (batch_size, num_hea