请使用python写一个bert模型结构?

本文提供了BERT模型结构的Python代码示例,强调了这仅是BERT的一部分,完整的应用需包括额外的层处理任务特定训练和推理,以及输入数据的预处理步骤。
摘要由CSDN通过智能技术生成

好的,这是一个简单的 BERT 模型结构的 Python 代码:

import transformers# 使用 transformers 库中的 BertModel 类初始化模型
model = transformers.BertModel.from_pretrained('bert-base-uncased')

# 将输入数据转换为张量
input_ids = torch.tensor(input_ids).unsqueeze(0)  # 添加一维,形状为 (batch_size, sequence_length)
attention_mask = torch.tensor(attention_mask).unsqueeze(0)  # 添加一维,形状为 (batch_size, sequence_length)

# 将输入传递给 BERT 模型,并获取输出
output = model(input_ids, attention_mask=attention_mask)

# 输出的第一个元素是隐藏层的输出,形状为 (batch_size, sequence_length, hidden_size)
# 输出的第二个元素是每个位置的注意力权重,形状为 (batch_size, num_hea
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值