对比股票趋势图,留下相似度高的,使用python代码,直接写代码

本文介绍如何使用Python计算股票历史数据的相关性。通过获取股票数据并利用相关库计算相关系数,筛选出相似度高的股票。
摘要由CSDN通过智能技术生成

好的,首先我们需要获取股票的历史数据,这通常可以通过调用金融数据接口或者爬取网页获取。假设我们已经获取了两只股票的历史数据,并将其存储在两个列表中,分别为 stock_1stock_2

我们可以使用 Python 的 numpy 库来计算两个列表的相关性。首先,我们需要导入 numpy 库:

import numpy as np

然后,我们可以使用 numpy 库中的 corrcoef 函数来计算两个列表的相关性:

correlation = np.corrcoef(stock_1, stock_2)[0, 1]

这个函数会返回一个矩阵,矩阵的中间值即为两个列表的相关性。

最后,我们可以使用一个条件语句来判断两个股票的相关性是否达到了我们设定的阈值:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值