股票走势相似度算法

博客介绍了在没有训练数据的情况下,如何利用Python的OpenCV库和图像形状的Hausdorff Distance以及Fréchet Distance进行图像分类。通过这两种距离度量方法,实现了对形状相似图片的有效聚类,达到了较好的分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python opencv形状相似度,

感谢博客:

(Python)从零开始,简单快速学机器仿人视觉Opencv---第十九节:关于轮廓的函数 - 古月居

import cv2
import numpy as np
 
img1 = cv2.imread('roi.jpg')
img2 = cv2.imread('0022.jpg')
 
ret,thresh=cv2.threshold(img1,127,255,0)
ret,thresh2=cv2.threshold(img2,127,255,0)
contours,hierarchy =cv2.findContours(thresh,2,1)
cnt1=contours[0]
contours,hierarchy =cv2.findContours(thresh2,2,1)
cnt2=contours[0]
ret=cv2.matchShapes(cnt1,cnt2,1,0,0)
print(ret)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值