基于知识图谱的机器学习算法推荐模型主要包括基于图卷积网络(GCN)的模型和基于阶段性自动编码器(PNAE)的模型。其中,GCN通过对知识图谱中的节点和边进行特征提取和融合,来实现知识建模和推荐。而PNAE则通过将知识图谱中的节点和关系进行阶段性编码,来实现知识表示和推荐。实现上,可以使用开源的知识图谱工具和机器学习框架来搭建模型。
基于知识图谱的机器学习算法推荐模型研究及实现
最新推荐文章于 2025-04-28 17:55:25 发布
基于知识图谱的机器学习算法推荐模型主要包括基于图卷积网络(GCN)的模型和基于阶段性自动编码器(PNAE)的模型。其中,GCN通过对知识图谱中的节点和边进行特征提取和融合,来实现知识建模和推荐。而PNAE则通过将知识图谱中的节点和关系进行阶段性编码,来实现知识表示和推荐。实现上,可以使用开源的知识图谱工具和机器学习框架来搭建模型。