基于知识图谱的机器学习算法推荐模型研究及实现

基于知识图谱的机器学习算法推荐模型主要包括基于图卷积网络(GCN)的模型和基于阶段性自动编码器(PNAE)的模型。其中,GCN通过对知识图谱中的节点和边进行特征提取和融合,来实现知识建模和推荐。而PNAE则通过将知识图谱中的节点和关系进行阶段性编码,来实现知识表示和推荐。实现上,可以使用开源的知识图谱工具和机器学习框架来搭建模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值