写一个粒子群算法优化LSTM回归预测的代码

好的,下面是一个用粒子群算法优化LSTM回归预测的Python代码,其中使用了PySwarm库实现粒子群算法:

``` import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM from sklearn.metrics import mean_squared_error from pyswarm import pso

准备数据

def prepare_data(data, lags): X, Y = [], [] for i in range(len(data)-lags-1): X.append(data[i:(i+lags), 0]) Y.append(data[(i+lags), 0]) return np.array(X), np.array(Y)

创建LSTM模型

def create_model(lags): model = Sequential() model.add(LSTM(50, input_shape=(1, lags))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') return model

粒子群算法优化

def pso_optimization(train_X, train_Y, test_X, test_Y, lags): # 定义目标函数 def objective_function(weights): # 将一维向量转为

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值