我想对股票收益数据集进行一个自相关测试(比如杜宾·沃森)。特别是,我有一个季度股票收益的数据集,所以每个季度都有一个观察值,它代表该季度收益公布后的1天股价回报。2只股票和3个季度的最小示例如下所示:data = [{'date': '3/22/18', 'return': 1},{'date': '3/22/18', 'return': 1},
{'date': '6/22/18', 'return': 3},{'date': '6/22/18', 'return': 3},
{'date': '9/22/18', 'return': 2},{'date': '9/22/18', 'return': 2}]
df = pd.DataFrame(data, index=['s1', 's2','s1','s2','s1','s2'])
date return
s1 3/22/18 1
s2 3/22/18 1
s1 6/22/18 3
s2 6/22/18 3
s1 9/22/18 2
s2 9/22/18 2
因为我有大量的股票,所以我想对每只股票分别进行测试,然后对每只股票进行一系列DW测试统计数据。像这样说:
^{pr2}$
我想用:
在statsmodels.stats.stattools.durbin_watson(剩余,轴=0)
但我不太确定如何继续获得上述数组。我们非常感谢您的帮助。在