https://www.quora.com/Why-do-we-use-an-RNN-instead-of-a-simple-neural-network

用 RNN (循环神经网络) 可以解决一些简单神经网络无法解决的问题。这是因为 RNN 有记忆功能,它可以通过保存之前网络的状态来影响当前的输出。

具体来说,RNN 通常被用来处理序列数据,比如文本、语音和时序数据。在处理序列数据时,我们希望网络能够利用上下文信息来进行预测。比如,在处理自然语言文本时,前面出现的单词可能会影响后面单词的意义。RNN 可以通过保存历史信息来解决这个问题。

简单的神经网络没有记忆功能,所以在处理序列数据时不太实用。虽然也可以使用简单的神经网络处理序列数据,但是要使用更加复杂的方法,比如将序列数据转化为固定长度的向量,然后使用简单的神经网络进行处理。但这样做会丢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值