卡尔曼滤波器是一种用于估计系统状态的算法。它通过对系统模型进行预测,并根据新观测到的数据对预测进行修正,从而不断更新估计的系统状态。
实现卡尔曼滤波器的步骤如下:
定义状态向量,表示系统的当前状态。
定义转移矩阵,用于将当前状态向量转移到下一时刻的状态向量。
定义观测矩阵,用于将系统的当前状态映射到观测值。
定义噪声协方差矩阵,用于表示在状态转移和观测过程中所产生的噪声。
对于每个时刻,执行以下操作:
- 预测:使用当前的状态向量和转移矩阵,预测下一时刻的状态向量。
- 更新:使用新的观测值和观测矩阵,更新预测得到的状态向量。
在实现过程中,还需要