python复现感知机的二分类算法

本博客复现感知机的二分类算法

import pandas as pd
import numpy as np


class Perceptron:

    def __init__(self, w=None, b=0):
        self.w = w
        self.b = b

    def fit(self, x_train: pd.DataFrame, y_train: pd.Series, iter=20, learn_rate=0.001):
        """
        :param x_train: 训练集特征
        :param y_train: 训练集分类
        :param iter: 迭代次数
        :param learn_rate: 学习率
        :return:
        """
        assert x_train.shape[0] == y_train.shape[0]
        w = np.zeros((1, x_train.shape[1]))
        b = 0
        for iter_time in range(iter):
            x_data = x_train.loc[iter_time]
            y_data = y_train.loc[iter_time]
            x_data = np.mat(x_data.tolist())
            y_data = np.mat(y_data.tolist())
            # 修正参数
            if -1 * y_data * (w * x_data.T + b) >= 0:
                w += learn_rate * y_data * x_data
                b += learn_rate * y_data
        self.w = w
        self.b = b

    def predict(self, x_test: pd.DataFrame):
        count = x_test.shape[0]  # 测试集数量
        w = self.w
        b = self.b
        result = []
        for i in range(count):
            x_data = x_test.loc[i]
            x_data = np.mat(x_data.tolist())
            y = w * x_data.T + b
            result.append(1) if y > 0 else result.append(-1)
        return result


data = pd.read_csv('../Mnist/mnist_train_little.csv', header=None)
test_data = pd.read_csv('../Mnist/mnist_test_little.csv', header=None)
x_train = data.drop(0, axis=1) # 训练集特征
y_train = data[0] # 训练集标签
x_test = test_data.drop(0, axis=1) # 测试集特征

# 模型
perceptron_model = Perceptron()
perceptron_model.fit(x_train=x_train, y_train=y_train)
y_predict = perceptron_model.predict(x_test=x_test)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆萌的代Ma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值