时间序列趋势判断(一)——斜率阈值判断

该博客介绍了一个Python代码示例,用于通过最小二乘法拟合数据并判断其趋势。如果拟合直线的斜率绝对值大于0.1763(对应于10度的倾斜角),则认为数据呈现上升或下降趋势。代码中定义了`trendline`函数,根据拟合斜率返回‘increasing’、‘decreasing’或‘notrend’。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用最小二乘法拟合 ax+b 的a值,代表斜率,

  • 如果abs(a) > 0.1763 (这是tan10度,相当于一个阈值,如果拟合的曲线仰角超过10度,就证明有倾向)

示例代码

import numpy as np


def trendline(data):
    """拟合后用斜率判断
    """
    index = [i for i in range(1, len(data) + 1)]
    coeffs = np.polyfit(index, list(data), 1)
    slope = coeffs[-2]
    if slope > 0.1763:  # 0.1763是 tan10°
        return "increasing"
    elif slope < -0.1763:
        return "decreasing"
    else:
        return "no trend"


if __name__ == '__main__':
    data = np.array([1, 2, 3, 4, 3, 5, 5, 7, 4, 7, ])
    print(trendline(data))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆萌的代Ma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值