差分方程_时间序列分析第一章 差分方程

本文深入探讨了时间序列分析中的差分方程,包括一阶差分方程的概念、递归求解方法和动态乘子,以及p阶差分方程的解析,重点阐述了特征值在系统稳定性中的作用,并分析了二阶差分系统的稳定条件和动态响应。
摘要由CSDN通过智能技术生成

时间序列分析关注事件或者说变量在时间上的动态变化情况。如果将时间人为分期,并记变量y在第t期的值为yt,那么将变量在第t期的值yt与另外的变量wt及第t期以前的值(如yt-1)联系起来的方程即为差分方程。下面首先介绍一阶差分方程,然后介绍p阶差分方程。

一、一阶差分方程

1、一阶差分方程的概念

一阶差分方程为:

yt = Φyt-1+wt

这个动态方程将变量在第t期的值yt与变量wt及变量在第t-1期的值联系起来。在后面的分析中,wt将被处理为随机变量,但在目前,我们先将其看作一期期的确定值。

2、用递归法求解差分方程

假定已知条件为:y-1和wt,其中t=0,1,2,...

在每个时期,我们都有一个方程将当期的y与前一期的y及当期的w联系起来,从而在已知y-1和wt在任意时期的值时,我们可以通过递归模拟出这个动态过程,进而求出y在每一时期的值。

第0期 y0= Φy-1+w0

第1期 y1= Φy0+w1

第2期 y2= Φy1+w2

• •

• •

• •

第t期 yt= Φyt-1+wt

进而,y1= Φy0+w1=Φ(Φy-1+w0)=

Φ2y-1+Φw0+w1

y2= Φy1+w2=Φ(Φ2y-1+Φw0+w1)=

Φ3y-1+Φ2w0+Φw1+w2

依此类推,可得

af45f6beda2e174e56b4ad362060364c.png

3、动态乘子

通过递归法模拟一阶差分方程,我们将yt表示为y-1与w的历史值的线性函数,这让我们很容易地看到w的各期值对yt的影响,如w0对yt的影响为:

c585854dcb2e1f1c8ea23e6a303de802.png

我们可以将yt+j表示为yt-1和w的历史值的线性函数(这里先贴图,后面有时间再打公式):

921ae4390695b6f16159de2389ff832f.png

从而,wt对yt+j的影响为:

63124427c06be7565575caf639b22ba4.png

这里就能很明显地看出,动态乘子(我理解为w的某一期值对y的某一期值的影响系数)只取决于时间间隔 j,而与时间t无关。

从动态乘子的表达式也可以看出y对w的动态响应与Φ的值密切相关。当0<Φ<1,随着时间间隔 j 的增大,w的影响以几何级数的速度趋于0;当-1<Φ<0,w对y的影响会震荡收敛于0;当Φ>1或Φ<-1时,动态乘子将以指数速度增加(不知道是不是所谓的爆炸过程),只不过都Φ为负时是一个振荡发散过程。因此,当|Φ|<1,差分方程是稳定(收敛)的,当|Φ|>1时系统是发散的。而对于边界情况Φ=1,式子变为

a3f5f915a8616123a95cc00960385e67.png

即w的每一历史值对y的影响均为1,w每增加一单位将导致y永久性地增加一单位:

c492411d707d76f580d42f57827fdb6b.png

接下来我们考虑w对y的所有现值的影响效应,假设利率为r,则t时刻的现值为

3333bf3b5ba653c26109d83bb0c07a13.png

记β=1/(1+r)为折现因子,则现值为

4a9a348510405ea059145071b4633116.png

将该式对wt求偏导有:

bb0f66d8f3fee45c697415f68f12b275.png

对于动态乘子的计算,该式只关心wt增加一单位同时wt+1及以后的未来值均不改变时对y的影响,即它计算的是w的某一时期的单个冲击对y的某一时期的影响效应,所以也称动态乘子式为脉冲响应函数。有时我们可能更关心w的永久变化对y的影响效应,永久变化的意思是说从某一期开始,w的值永久性增加1个单位,对y的影响为:

afdd540b559a31177c98c04b715caa64.png

当|Φ|<1且j趋于无穷时,我们就得到了w对y的长期效应:

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【有限差分初学者必备】如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值 ,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值