时间序列分析——第一章 差分方程

差分方程

1.1 导论

1、什么是时间序列?

时间序列是按照时间先后顺序排列而成的随机序列。

2、什么是时间序列分析方法?

时间序列分析研究时间序列所能反映的社会经济现象的发展过程和规律性,进而类推或延申,预测其发展趋势的动态方法。

3、时间序列分析步骤:

(1)收集历史数据
(2)分析时间序列
(3)求解时间序列的趋势项、季节性、随机扰动项,建立时间序列模型
(4)时间序列模型的检验及预测未来值

4、时间序列分析的特点:

(1)数据导向型,研究时间序列间的自相关关系
(2)时间序列数据具有随机性和非随机性的:前者有随机扰动,后者包括趋势项、季节性、循环波动。

差分方程是刻画时间序列动态变化的一种常见方式,这章主要介绍了差分方程的解法及其性质,下面是思维导图:
在这里插入图片描述

1.2 一阶差分方程

1.2.1 线性差分方程

一阶差分方程是关于变量及其滞后一期值的关系表示 即 y t = ϕ y t − 1 + w t y_t=\phi y_{t-1}+w_t yt=ϕyt1+wt

其中 w t w_t wt表示其他变量即外生冲击对 y t y_t yt的影响,时间序列主要研究当 w t w_t wt变化时,y的变化如何。

1.2.2 递归替代法

y t = ϕ y t − 1 + w t y_t=\phi y_{t-1}+w_t yt=ϕyt1+wt

y t + 1 = ϕ y t + w t + 1 = ϕ ( ϕ y t − 1 + w t ) + w t + 1 = ϕ 2 y t − 1 + ϕ w t + w t + 1 y_{t+1}=\phi y_{t}+w_{t+1}=\phi(\phi y_{t-1}+w_t)+w_{t+1}=\phi^2y_{t-1}+\phi w_t + w_{t+1} yt+1=ϕyt+wt+1=ϕ(ϕyt1+wt)+wt+1=ϕ2yt1+ϕwt+wt+1

y t + 2 = ϕ y t + 1 + w t + 2 = ϕ 3 y t − 1 + ϕ 2 w t + ϕ w t + 1 + w t + 2 y_{t+2}=\phi y_{t+1}+w_{t+2}=\phi^3y_{t-1}+\phi^2 w_t + \phi w_{t+1} + w_{t+2} yt+2=ϕyt+1+wt+2=ϕ3yt1+ϕ2wt+ϕwt+1+wt+2
……
y t + j = ϕ j + 1 y t − 1 + ϕ j w t + ϕ j − 1 w t + 1 + … + ϕ w t + j − 1 + w t + j y_{t+j}=\phi^{j+1} y_{t-1}+\phi^j w_{t}+\phi^{j-1}w_{t+1}+…+\phi w_{t+j-1}+w_{t+j} yt+j=ϕj+1yt1+ϕjwt+ϕj1wt+1++ϕwt+j1+wt+j

解的特征:

从上面递推过程可以知道:差分方程的解需要初始值和未来外生冲击的大小

从0期开始分析: y − 1 y_{-1} y1及外生冲击
从t期开始分析: y t − 1 y_{t-1} yt1及外生冲击

1.2.3 动态乘子

w t w_t wt y t + j y_{t+j} yt+j的影响: ∂ y t + j ∂ w t = ϕ j {\partial y_{t+j}\over \partial w_t} =\phi^j wtyt+j=ϕj, 在系数给定的条件下,只与时间间隔有关。

不同系数 ϕ \phi ϕ对动态乘子影响:

(1) − 1 < ϕ < 0 -1<\phi<0 1<ϕ<0
不断变号,动态乘子指数衰减
(2) 0 < ϕ < 1 0<\phi<1 0<ϕ<1
随着时间的推移,动态乘子指数衰减
(3) ϕ > 1 \phi>1 ϕ>1
按指数方式增加
(4) ϕ < − 1 \phi<-1 ϕ<1
振荡发散
(5) ϕ = 1 \phi=1 ϕ=1
外生冲击历史值之和 ,影响不会消失

1.2.4 脉冲响应和长期效应

脉冲响应: w t w_t wt的暂时性变化(只有t改变)对后续 y t + j y_{t+j} yt+j的影响

短暂性冲击的累计效应为

∑ j = 0 ∞ ∂ y t + j ∂ w t = ∑ j = 0 ∞ ϕ j = 1 1 − ϕ \sum_{j=0}^∞{\partial y_{t+j}\over \partial w_t} =\sum_{j=0}^∞\phi^j={1\over{1-\phi}} j=0wtyt+j=j=0ϕj=1ϕ1

长期效应: w t w_{t} wt的永久性变化(以后每期都变化)对某一时期 y t + j y_{t+j} yt+j的影响

∑ j = 0 ∞ ∂ y t + j ∂ w t = ∑ i = 0 j ϕ i = 1 1 − ϕ \sum_{j=0}^\infty{\partial y_{t+j}\over \partial w_{t} }=\sum_{i=0}^j\phi^i={1\over{1-\phi}} j=0wtyt+j=i=0jϕi=1ϕ1

1.3 p阶差分方程

1.3.1 p阶差分方程的形式

  • 基本形式: y t = ϕ 1 y t − 1 + ϕ 2 y t − 2 + ϕ 3 y t − 3 + … ϕ p y t − p + w t y_t=\phi_1y_{t-1}+\phi_2y_{t-2}+\phi_3y_{t-3}+…\phi_py_{t-p}+w_t yt=ϕ1yt1+ϕ2yt2+ϕ3yt3+ϕpytp+wt

  • 向量形式: ξ t = F ξ t − 1 + v t \xi_t=F\xi_{t-1}+v_t ξt=Fξt1+vt

    • 定义一个p维向量:

      将多个标量变量 y t y_t yt表示成一个向量:

      ξ t = [ y t ; y t − 1 ; y t − 2 ; … ; y t − p + 1 ] \xi_t=[y_t;y_{t-1};y_{t-2};…;y_{t-p+1}] ξt=[yt;yt1;yt2;ytp+1]

      滞后一阶向量 ξ t − 1 = [ y t − 1 ; y t − 2 ; y t − 3 ; … ; y t − p ; y t − p ] \xi_{t-1}=[y_{t-1};y_{t-2};y_{t-3};…;y_{t-p};y_{t-p}] ξt1=[yt1;yt2;yt3;ytpytp]

    • 定义随机冲击向量:

      v t = [ w t ; 0 ; 0 ; … ; 0 ] v_t=[w_t;0;0;…;0] vt=[wt;0;0;;0]

  • 定义一个p阶矩阵:
    F = [ ϕ 1 ϕ 2 ϕ 3 … ϕ p − 1 ϕ p 1 0 0 … 0 0 0 1 0 … 0 0 … … … … 0 0 0 … 1 0 ] F= \left[ \begin{matrix} \phi_1 & \phi_2 & \phi_3 …&\phi_{p-1} &\phi_p \\ 1 & 0 & 0 …&0 &0 \\ 0 & 1 & 0 …&0 &0 \\ …&…&…&…\\ 0 & 0 & 0 …&1 &0 \end{matrix}\right] F=ϕ1100ϕ2010ϕ3000ϕp1001ϕp000

  • 解释 ξ t = F ξ t − 1 + v t \xi_t=F\xi_{t-1}+v_t ξt=Fξt1+vt:

    矩阵第一行乘以 ξ t − 1 \xi_{t-1} ξt1 ϕ 1 y t − 1 + ϕ 2 y t − 2 + ϕ 3 y t − 3 + … ϕ p y t − p \phi_1y_{t-1}+\phi_2y_{t-2}+\phi_3y_{t-3}+…\phi_py_{t-p} ϕ1yt1+ϕ2yt2+ϕ3yt3+ϕpytp

    矩阵[2:p-1,] ξ t − 1 \xi_{t-1} ξt1 表示p-1个等式 y t − i = y t − i y_{t-i}=y_{t-i} yti=yti,i=1,2,3,…p-1

1.3.1 p阶差分方程的解法:类似一阶差分方程

  1. ξ 0 = F ξ − 1 + v 0 \xi_0=F\xi_{-1}+v_0 ξ0=Fξ1+v0
  2. ξ 1 = F ξ 0 + v 1 = F ( F ξ − 1 + v 0 ) + v 1 = F 2 ξ − 1 + F v 0 + v 1 \xi_1=F\xi_{0}+v_1=F(F\xi_{-1}+v_0)+v_1=F^2\xi_{-1}+Fv_0+v_1 ξ1=Fξ0+v1=F(Fξ1+v0)+v1=F2ξ1+Fv0+v1
  3. 迭代t步: ξ t = F t + 1 ξ − 1 + F t v 0 + F t − 1 v 1 + F t − 1 v 2 + … F v t − 1 + v t \xi_t=F^{t+1}\xi_{-1}+F^tv_0+F^{t-1}v_1+F^{t-1}v_2+…Fv_{t-1}+v_t ξt=Ft+1ξ1+Ftv0+Ft1v1+Ft1v2+Fvt1+vt
  4. 继续迭代j步: ξ t + j = F j + 1 ξ t − 1 + F j v t + F j − 1 v t + 1 + F j − 2 v t + 2 + … F v t + j − 1 + v t + j \xi_{t+j}=F^{j+1}\xi_{t-1}+F^jv_t+F^{j-1}v_{t+1}+F^{j-2}v_{t+2}+…Fv_{t+j-1}+v_{t+j} ξt+j=Fj+1ξt1+Fjvt+Fj1vt+1+Fj2vt+2+Fvt+j1+vt+j
  5. 所以,将 y t , w t y_t,w_t yt,wt 代入有: [   y t y t − 1 y t − 2 … y t − p + 1 ] = F t + 1 [   y − 1 y − 2 y − 3 … y − p ] + F t [   w 0 0 0 … 0 ] + F t − 1 [   w 1 0 0 … 0 ] + F [   w t − 1 0 0 … 0 ] + [   w t 0 0 … 0 ] \left[ \begin{matrix} \ y_t \\ y_{t-1} \\ y_{t-2} \\ …\\ y_{t-p+1} \end{matrix}\right]= F^{t+1}\left[ \begin{matrix} \ y_{-1} \\ y_{-2} \\ y_{-3} \\ …\\ y_{-p} \end{matrix}\right]+F^{t}\left[ \begin{matrix} \ w_{0} \\ 0 \\ 0 \\ …\\ 0 \end{matrix}\right]+F^{t-1}\left[ \begin{matrix} \ w_{1} \\ 0 \\ 0 \\ …\\ 0 \end{matrix}\right]+F\left[ \begin{matrix} \ w_{t-1} \\ 0 \\ 0 \\ …\\ 0 \end{matrix}\right]+\left[ \begin{matrix} \ w_{t} \\ 0 \\ 0 \\ …\\ 0 \end{matrix}\right]  ytyt1yt2ytp+1=Ft+1 y1y2y3yp+Ft w0000+Ft1 w1000+F wt1000+ wt000
    第一个方程即可刻画p阶差分方程表示的动态过程。所以我们只需要知道 F t F^t Ft的第一行元素和y的初值即可计算第一项;知道 F t F^t Ft的第一个元素记作 f ( 11 ) t f_{(11)}^{t} f(11)t即可计算动态乘子。

p阶差分方程满足

y t = f ( 11 ) t + 1 y − 1 + f ( 12 ) t + 1 y − 2 + f ( 13 ) t + 1 y − 3 + … f ( 1 p ) t + 1 y − p + f ( 11 ) t w 0 + f ( 11 ) t − 1 w 1 + f ( 11 ) t − 2 w 2 + … + f ( 11 ) w t − 1 + w t y_t=f_{(11)}^{t+1}y_{-1}+f_{(12)}^{t+1}y_{-2}+f_{(13)}^{t+1}y_{-3}+… f_{(1p)}^{t+1}y_{-p}+f_{(11)}^{t}w_{0}+f_{(11)}^{t-1}w_{1}+f_{(11)}^{t-2}w_{2}+…+f_{(11)}w_{t-1}+w_{t} yt=f(11)t+1y1+f(12)t+1y2+f(13)t+1y3+f(1p)t+1yp+f(11)tw0+f(11)t1w1+f(11)t2w2++f(11)wt1+wt

动态乘子

∂ y t + j ∂ w t \partial y_{t+j}\over\partial w_{t} wtyt+j= f ( 11 ) j f_{(11)}^{j} f(11)j

1.3.1 特征根检验:上一节矩阵的特征根

  1. 由特征方程: ∣ F − λ I ∣ = 0 |F-λI|=0 FλI=0可得:

    λ p − ϕ 1 λ p − 1 − ϕ 2 λ p − 2 − … … − ϕ p − 1 λ − ϕ p = 0 \lambda^p-\phi_1\lambda^{p-1}-\phi_2\lambda^{p-2}-……-\phi_{p-1}\lambda-\phi_{p}=0 λpϕ1λp1ϕ2λp2ϕp1λϕp=0

  2. p个不同特征根:可相似对角化,存在线性无关的特征向量:

    f ( 11 ) j f_{(11)}^{j} f(11)j是 j 次特征根的线性组合,而且系数与特征根相关(用特征根构造特征向量证明)。

    f ( 11 ) j = c 1 λ 1 j + c 2 λ 2 j + … + c p λ p j f_{(11)}^{j}=c_1\lambda_1^j+c_2\lambda_2^j+…+c_p\lambda_p^j f(11)j=c1λ1j+c2λ2j++cpλpj

    如果最大特征根大于1,则动态乘子将会趋于无穷大,时间序列不平稳。
    所以平稳时间序列要求单位根小于1.

  3. 复数特征根:动态乘子与三角函数有关, w t 对 y t + j w_t对y_{t+j} wtyt+j的影响呈现:在某些区间增加,某些区间减少,R=1脉冲永不消逝,R<1,以正弦曲线振幅消逝。复特征根容易形成周期。
    c o s θ = a / R cos\theta=a/R cosθ=a/R 即实部/模 ,反三角函数求解出 θ \theta θ ,循环周期为 2 π / θ 2\pi/\theta 2π/θ

相关推荐
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页