ldl
Hermitian 不定矩阵的分块 LDL 分解
语法
L = ldl(A)
[L,D] = ldl(A)
[L,D,P] = ldl(A)
[L,D,p] = ldl(A,'vector')
[U,D,P] = ldl(A,'upper')
[U,D,p] = ldl(A,'upper','vector')
[L,D,P,S] = ldl(A)
[L,D,P,S] = LDL(A,THRESH)
[U,D,p,S] = LDL(A,THRESH,'upper','vector')
说明
L = ldl(A) 仅返回和双输出形式中相同的置换下三角矩阵 L。置换信息丢失,分块对角因子 D 也丢失。默认情况下,ldl 仅引用 A 的对角和下三角,并假定上三角是下三角的复共轭转置。因此 [L,D,P] = ldl(TRIL(A)) 和 [L,D,P]
= ldl(A) 都返回完全相同的因子。请注意,此语法对稀疏 A 无效。
[L,D] = ldl(A) 将分块对角矩阵 D 和置换下三角矩阵存储在 L 中,使得 A = L*D*L'。分块对角矩阵 D 在其对角上具有 1×1 和 2×2 个分块。请注意,此语法对稀疏 A 无效。
[L,D,P] = ldl(A) 返回单位下三角矩阵 L、分块对角 D 和置换矩阵 P,使得 P'*A*P
= L*D*L'。这与 [L,D,P] = ldl(A,'matrix') 等效。
[L,D,p] = ldl(A,'vector') 将置换信息作为向量 p 而不是矩阵返回。即,p 是行向量,使得 A(p,p) = L*D*L'。
[U,D,P] = ldl(A,'upper') 仅引用 A 的对角和上三角,并假定下三角是上三角的复共轭转置。此语法返回单位上三角矩阵 U,使得 P'*A*P = U'*D*U(假定 A 是 Hermitian 矩阵,而不仅仅是上三角矩阵)。[L,D,P]
= ldl(A,'lower') 提供相似的默认行为。
[U,D,p] = ldl(A,'