matlab hermitian,Hermitian 不定矩阵的分块 LDL 分解

该博客介绍了Matlab中用于Hermitian不定矩阵的分块LDL分解函数ldl,详细阐述了不同语法形式及其应用场景,包括置换下三角矩阵L、分块对角矩阵D、置换矩阵P等。还通过示例展示了正定和不定矩阵的分解过程及求解线性系统的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ldl

Hermitian 不定矩阵的分块 LDL 分解

语法

L = ldl(A)

[L,D] = ldl(A)

[L,D,P] = ldl(A)

[L,D,p] = ldl(A,'vector')

[U,D,P] = ldl(A,'upper')

[U,D,p] = ldl(A,'upper','vector')

[L,D,P,S] = ldl(A)

[L,D,P,S] = LDL(A,THRESH)

[U,D,p,S] = LDL(A,THRESH,'upper','vector')

说明

L = ldl(A) 仅返回和双输出形式中相同的置换下三角矩阵 L。置换信息丢失,分块对角因子 D 也丢失。默认情况下,ldl 仅引用 A 的对角和下三角,并假定上三角是下三角的复共轭转置。因此 [L,D,P] = ldl(TRIL(A)) 和 [L,D,P]

= ldl(A) 都返回完全相同的因子。请注意,此语法对稀疏 A 无效。

[L,D] = ldl(A) 将分块对角矩阵 D 和置换下三角矩阵存储在 L 中,使得 A = L*D*L'。分块对角矩阵 D 在其对角上具有 1×1 和 2×2 个分块。请注意,此语法对稀疏 A 无效。

[L,D,P] = ldl(A) 返回单位下三角矩阵 L、分块对角 D 和置换矩阵 P,使得 P'*A*P

= L*D*L'。这与 [L,D,P] = ldl(A,'matrix') 等效。

[L,D,p] = ldl(A,'vector') 将置换信息作为向量 p 而不是矩阵返回。即,p 是行向量,使得 A(p,p) = L*D*L'。

[U,D,P] = ldl(A,'upper') 仅引用 A 的对角和上三角,并假定下三角是上三角的复共轭转置。此语法返回单位上三角矩阵 U,使得 P'*A*P = U'*D*U(假定 A 是 Hermitian 矩阵,而不仅仅是上三角矩阵)。[L,D,P]

= ldl(A,'lower') 提供相似的默认行为。

[U,D,p] = ldl(A,'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值