内积空间定义
V是 F F F的线性空间的话,对于一种定义的内积运算(运算结果表示为 ( x , y ) , ( x , y ) ∈ F (x,y),(x,y)\in F (x,y),(x,y)∈F),如果能满足四条性质,这个线性空间就是一个内积空间。
(1)共轭对称性: ( x , y ) = ( x , y ) ‾ (x,y) = \overline{(x,y)} (x,y)=(x,y)
(2)可加性: ( x + z , y ) = ( x , y ) + ( z , y ) (x+z,y) = (x,y)+(z,y) (x+z,y)=(x,y)+(z,y)
(3)齐次性: ( k x , y ) = k ( x , y ) (kx,y) = k(x,y) (kx,y)=k(x,y)
(4)正定性: ( x , x ) ≥ 0 (x,x)≥0 (x,x)≥0,当且仅当 x = θ x=\theta x=θ时候取等号
其中实内积空间称为欧几里得空间,复内积空间称为酉空间。酉空间维数=线性空间维数,酉空间的线性子空间仍然是酉空间。
度量矩阵
α 1 , . . . , α n \alpha_1,...,\alpha_n α1,...,αn为内积空间中的基,度量矩阵 A = ( α 1 , . . . , α n ) ′ ⋅ ( α 1 , . . . , α n ) = (