矩阵理论——内积空间

内积空间定义

V F F F的线性空间的话,对于一种定义的内积运算(运算结果表示为 ( x , y ) , ( x , y ) ∈ F (x,y),(x,y)\in F (x,y),(x,y)F),如果能满足四条性质,这个线性空间就是一个内积空间。
(1)共轭对称性: ( x , y ) = ( x , y ) ‾ (x,y) = \overline{(x,y)} (x,y)=(x,y)
(2)可加性: ( x + z , y ) = ( x , y ) + ( z , y ) (x+z,y) = (x,y)+(z,y) (x+z,y)=(x,y)+(z,y)
(3)齐次性: ( k x , y ) = k ( x , y ) (kx,y) = k(x,y) (kx,y)=k(x,y)
(4)正定性: ( x , x ) ≥ 0 (x,x)≥0 (x,x)0,当且仅当 x = θ x=\theta x=θ时候取等号

在这里插入图片描述
其中实内积空间称为欧几里得空间,复内积空间称为酉空间。酉空间维数=线性空间维数,酉空间的线性子空间仍然是酉空间。

度量矩阵

α 1 , . . . , α n \alpha_1,...,\alpha_n α1,...,αn为内积空间中的基,度量矩阵 A = ( α 1 , . . . , α n ) ′ ⋅ ( α 1 , . . . , α n ) = (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值