在矩阵理论中,我们已经研究过埃尔米特( Hermite)阵、酉阵和正规阵,下面我们要在希尔伯特空间中建立起相应的自伴算子、酉算子和正规算子的概念,并讨论这些算子的一些基本性质.
定义
设 T T T 为希尔伯特空间 X X X 到 X X X 中 的有界线性算子,若 T = T ∗ , T = T ^ { * } , T=T∗, 则称 T T T 为 X X X 上的自伴算子;若 T T ∗ = T ∗ T , T T ^ { * } = T ^ { * } T , TT∗=T∗T, 则称 T T T 为 X X X 上的正规算子;若 T T T 是 X X X 到 X X X 上 的一对一映射,且 T ∗ = T − 1 , T ^ { * } = T ^ { - 1 } , T∗=T−1, 则称 T T T 为 X X X 上 的酉算子、
当 T T T 是自伴算子时,由 T ∗ T ^ { * } T∗ 的定义,对一切 x , y ∈ X , x , y \in X , x,y∈X,
⟨ T x , y ⟩ = ⟨ x , T y ⟩ . ( 1 ) \langle T x , y \rangle = \langle x , T y \rangle .\quad\quad(1) ⟨Tx,y⟩=⟨x,Ty⟩.(1)
显然自伴算子必为正规算子.又由酉算子定义,有
T ∗ T = T T ∗ = I , ( 2 ) T ^ { * } T = T T ^ { * } = I ,\quad\quad(2) T∗T=TT∗=I,(2)
其中 I I I 为 X X X 上 恒等算子;反之,若(2)式成立,则 T T T 为 X X X 上酉算子.由(2)式知,酉算子必为正规算子正规算子不一定是酉算子或自伴算子,例如 T = 2 i I , T = 2 \mathrm { i } I , T=2iI,则 T ∗ = − 2 i I , T ^ { * } = - 2 \mathrm { i } I , T∗=−2iI, 所以 T T ∗ = T T ^ { * } = TT∗= T ∗ T = 4 I , T ^ { * } T = 4 I , T∗T=4I, 即 T T T 是正规算子,但显然 T T T 不是自伴算子和酉算子
为了讨论这些算子的一些基本性质,首先证明下面的引理,
引理
设 T T T 为复内积空间 X X X 上 有界线性算子,那么 T = 0 T = 0 T=0的充要条件为对一切 x ∈ x \in x∈ X , X , X, 有
⟨ T x , x ⟩ = 0. ( 3 ) \langle T x , x \rangle = 0 .\quad\quad(3) ⟨Tx,x⟩=0.(3)
证明
若 T = 0 , T = 0 , T=0, 显然有 ⟨ T x , x ⟩ = 0 ; \langle T x , x \rangle = 0 ; ⟨Tx,x⟩=0;反之,如果(3)式对一切 x ∈ X x \in X x∈X 成立,对任何 x , y x , y x,y ∈ X \in X ∈X 及数 α , \alpha , α, 令 v = α x + y , v = \alpha x + y , v=αx+y, 由条件得
0 = ⟨ T v , v ⟩ = ∣ α ∣ 2 ⟨ T x , x ⟩ + ⟨ T y , y ⟩ + α ⟨ T x , y ⟩ + α ~ ⟨ T y , x ⟩ = α ⟨ T x , y ⟩ + α ~ ⟨ T y , x ⟩ . ( 4 ) 0 = \langle T v , v \rangle = | \alpha | ^ { 2 } \langle T x , x \rangle + \langle T y , y \rangle + \alpha \langle T x , y \rangle + \tilde { \alpha } \langle T y , x \rangle = \alpha \langle T x , y \rangle + \tilde { \alpha } \langle T y , x \rangle .\quad\quad(4) 0=⟨Tv,v⟩=∣α∣2⟨Tx,x⟩+⟨Ty,y⟩+α⟨Tx,y⟩+α~⟨Ty,x⟩=α⟨Tx,y⟩+α~⟨Ty,x⟩.(4)
令 α = i , \alpha = \mathrm { i } , α=i, 则 α ˉ = − i , \bar { \alpha } = - \mathrm { i } , αˉ=−i,此时由(4)式可得
⟨ T x , y ⟩ − ⟨ T y , x ⟩ = 0. ( 5 ) \langle T x , y \rangle - \langle T y , x \rangle = 0 .\quad\quad(5) ⟨Tx,y⟩−⟨Ty,x⟩=0.(5)
又若令 α = 1 , \alpha = 1 , α=1, 则由(4)式可得
⟨ T x , y ⟩ + ⟨ T y , x ⟩ = 0. ( 6 ) \langle T x , y \rangle + \langle T y , x \rangle = 0 .\quad\quad(6) ⟨Tx,y⟩+⟨Ty,x⟩=0.(6)
将(5)式与(6)式相加,得到 ⟨ T x , y ⟩ = 0 , \langle T x , y \rangle = 0 , ⟨Tx,y⟩=0, 由 于 x , y x , y x,y是 X X X 中 的任意向量,所以 T = 0. T = 0 . T=0.
定理1
设 T T T 为复希尔伯特空间 X X X 上有界线性算子,则 T T T为自伴算子的充要条件为对一切 x ∈ X , ⟨ T x , x ) x \in X , \langle T x , x ) x∈X,⟨Tx,