泛函分析基础9-3-希尔伯特空间5:自伴算子、酉(yǒu)算子和正规算子

该篇博客介绍了希尔伯特空间中自伴算子、酉算子和正规算子的概念及其性质。自伴算子满足 T=T*,正规算子满足 TT*=T*T,而酉算子则是 T*T*=I 的有界线性算子。文章通过定义、引理和定理详细阐述了这些算子的相互关系以及它们的运算特性,包括自伴性和保范性的关系、算子的笛卡儿分解,并讨论了正规算子的充要条件。
摘要由CSDN通过智能技术生成

在矩阵理论中,我们已经研究过埃尔米特( Hermite)阵、酉阵和正规阵,下面我们要在希尔伯特空间中建立起相应的自伴算子、酉算子和正规算子的概念,并讨论这些算子的一些基本性质.

定义

T T T 为希尔伯特空间 X X X X X X 中 的有界线性算子,若 T = T ∗ , T = T ^ { * } , T=T, 则称 T T T X X X 上的自伴算子;若 T T ∗ = T ∗ T , T T ^ { * } = T ^ { * } T , TT=TT, 则称 T T T X X X 上的正规算子;若 T T T X X X X X X 上 的一对一映射,且 T ∗ = T − 1 , T ^ { * } = T ^ { - 1 } , T=T1, 则称 T T T X X X 上 的酉算子、

T T T 是自伴算子时,由 T ∗ T ^ { * } T 的定义,对一切 x , y ∈ X , x , y \in X , x,yX,

⟨ T x , y ⟩ = ⟨ x , T y ⟩ . ( 1 ) \langle T x , y \rangle = \langle x , T y \rangle .\quad\quad(1) Tx,y=x,Ty.(1)

显然自伴算子必为正规算子.又由酉算子定义,有

T ∗ T = T T ∗ = I , ( 2 ) T ^ { * } T = T T ^ { * } = I ,\quad\quad(2) TT=TT=I,(2)

其中 I I I X X X 上 恒等算子;反之,若(2)式成立,则 T T T X X X 上酉算子.由(2)式知,酉算子必为正规算子正规算子不一定是酉算子或自伴算子,例如 T = 2 i I , T = 2 \mathrm { i } I , T=2iI, T ∗ = − 2 i I , T ^ { * } = - 2 \mathrm { i } I , T=2iI, 所以 T T ∗ = T T ^ { * } = TT= T ∗ T = 4 I , T ^ { * } T = 4 I , TT=4I, T T T 是正规算子,但显然 T T T 不是自伴算子和酉算子

为了讨论这些算子的一些基本性质,首先证明下面的引理,

引理

T T T 为复内积空间 X X X 上 有界线性算子,那么 T = 0 T = 0 T=0的充要条件为对一切 x ∈ x \in x X , X , X,

⟨ T x , x ⟩ = 0. ( 3 ) \langle T x , x \rangle = 0 .\quad\quad(3) Tx,x=0.(3)

证明
T = 0 , T = 0 , T=0, 显然有 ⟨ T x , x ⟩ = 0 ; \langle T x , x \rangle = 0 ; Tx,x=0;反之,如果(3)式对一切 x ∈ X x \in X xX 成立,对任何 x , y x , y x,y ∈ X \in X X 及数 α , \alpha , α, v = α x + y , v = \alpha x + y , v=αx+y, 由条件得

0 = ⟨ T v , v ⟩ = ∣ α ∣ 2 ⟨ T x , x ⟩ + ⟨ T y , y ⟩ + α ⟨ T x , y ⟩ + α ~ ⟨ T y , x ⟩ = α ⟨ T x , y ⟩ + α ~ ⟨ T y , x ⟩ . ( 4 ) 0 = \langle T v , v \rangle = | \alpha | ^ { 2 } \langle T x , x \rangle + \langle T y , y \rangle + \alpha \langle T x , y \rangle + \tilde { \alpha } \langle T y , x \rangle = \alpha \langle T x , y \rangle + \tilde { \alpha } \langle T y , x \rangle .\quad\quad(4) 0=Tv,v=α2Tx,x+Ty,y+αTx,y+α~Ty,x=αTx,y+α~Ty,x.(4)

α = i , \alpha = \mathrm { i } , α=i, α ˉ = − i , \bar { \alpha } = - \mathrm { i } , αˉ=i,此时由(4)式可得

⟨ T x , y ⟩ − ⟨ T y , x ⟩ = 0. ( 5 ) \langle T x , y \rangle - \langle T y , x \rangle = 0 .\quad\quad(5) Tx,yTy,x=0.(5)

又若令 α = 1 , \alpha = 1 , α=1, 则由(4)式可得

⟨ T x , y ⟩ + ⟨ T y , x ⟩ = 0. ( 6 ) \langle T x , y \rangle + \langle T y , x \rangle = 0 .\quad\quad(6) Tx,y+Ty,x=0.(6)

将(5)式与(6)式相加,得到 ⟨ T x , y ⟩ = 0 , \langle T x , y \rangle = 0 , Tx,y=0, 由 于 x , y x , y x,y X X X 中 的任意向量,所以 T = 0. T = 0 . T=0.

定理1

T T T 为复希尔伯特空间 X X X 上有界线性算子,则 T T T为自伴算子的充要条件为对一切 x ∈ X , ⟨ T x , x ) x \in X , \langle T x , x ) xX,Tx,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值