python检测多重共线性程序_用 VIF 方法消除多维数据中的多重共线性

本文介绍了如何使用Python中的VIF(方差膨胀因子)方法来检测和消除多维数据中的多重共线性问题。通过一个多元线性回归模型实例,展示了多重共线性可能带来的问题以及如何通过VIF方法找出并去除相关性强的变量,从而提高模型的解释性和准确性。
摘要由CSDN通过智能技术生成

多元线性回归是我们在数据分析中经常用到的一个方法,很多人在遇到多维数据时基本上无脑使用该方法,而在用多元线性回归之后所得到的结果又并不总是完美的,其问题实际上并不出在方法上,而是出在数据上。当数据涉及的维度过多时,我们就很难保证维度之间互不相关,而这些维度又都对结果产生一定影响,当一组维度或者变量之间有较强的相关性时,就认为是一种违背多元线性回归模型基本假设的情形。今天我们就讲解一下如何用VIF方法消除多维数据中多重共线性的问题。

首先介绍一下多重共线性。

多元回归模型有一个基本假设,就是要求设计矩阵X的秩rank(X)=p+1,其中p是维度数,即要求X中的列向量之间线性无关。如果存在不全为零的p+1个数c0、c1、c2、...、cp,使得c0 + c1xi1 + c2xi2 + ... + cpxip = 0,i=1, 2, 3, ..., n,则自变量x1、x2、...、xp之间存在多重共线性(multi-collinearity),因为实际问题中,完全多重共线性不太常见,所以上式中的等号经常用约等号。多重共线性到底会带来什么问题呢,笔者下面就用一个实际例子来告诉大家。

这个例子来自1994年统计摘要,是一个中国民航客运量的回归模型,统计了1978至1993年的各年数据。该模型以民航客运量为因变量y,以国民收入、消费额、民航航线里程、来华旅游入境人数作为影响客运量的主要因素,其中y的单位是万人,x1表示国民收入(亿元),x2表示消费额(亿元),x3表示铁路客运量(万人),x4表示民航航线里程(万公里),x5表示来华旅游入境人数(万人)。该数据集如图1所示,一共16行、7列(包括前面的y

VIF(Variance Inflation Factor,方差膨胀因子)是一种用于检测多重共线性的统计量。根据引用\[1\]和引用\[2\]的内容,VIF的取值大于1,VIF值越接近于1,多重共线性越轻,反之越重。通常以10作为判断边界。当VIF<10,不存在多重共线性;当10<=VIF<100,存在较强的多重共线性;当VIF>=100,存在严重多重共线性。 在进行线性回归分析时,可以使用VIF检测多重共线性。一般来说,如果VIF大于2,就表明存在多重共线性问题。因此,可以通过计算每个变量的VIF值来判断是否存在多重共线性。如果某个变量的VIF值较高,说明该变量与其他自变量之间存在较强的线性关系,可能会影响回归模型的准确性。 综上所述,VIF是一种用于检测多重共线性的统计量,通过计算每个变量的VIF值可以判断是否存在多重共线性问题。当VIF大于2时,表明存在多重共线性。 #### 引用[.reference_title] - *1* *3* [数据分析——多重共线性检验](https://blog.csdn.net/qq_36336522/article/details/105897548)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [R 检测多重共线性](https://blog.csdn.net/Mrrunsen/article/details/121886670)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值