【遥感】遥感影像中的QA波段(质量评估波段)存储方式介绍

本文介绍了遥感影像中的QA波段,它是通过FMASK算法得到的质量评估数据,用于评估云、云影、水体等信息。QA波段是二进制转十进制的数据,记录了地物类型和可能性。在去云和水体提取等处理中,通过按位运算进行信息提取。文中提供了去云和水体提取的实例及代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导语:

在遥感图像处理过程中,我们常使用的波段有可见光、红外、微波等波段。但是,在获取Landsat、Sentinel等卫星影像数据时,往往有其他波段影像存在,QA波段就是其中之一。QA波段是什么,它又有什么作用呢?


文件信息介绍

图1是Landsat卫星OLI影像文件的主要数据信息。从文件名可以分析出这是一景Landsat8的矫正等级Level2的影像,行列号为132027,时间是2019年8月16日,处理时间是2020年8月27日(从最后的修改日期也可以看出),产品级别为Collecton 2 Tier 1。
Landsat 8数据内容
图1 Landsat 8数据内容


波段数据可视化


正如导语所说,我们常用的Landsat 8影像数据有B1-B7(第1-7波段),但也有其他波段存在,其中QA_PIXEL(QA波段)是Landsat5-8每个产品中都存在的。下面代码展示了影像QA波段读入和展示的过程。

from osgeo import gdal
import os
import matplotlib.pyplot as plt
import numpy as np
os.chdir(r'D:\Users\Administrator\Downloads\LC08_L2SP_132027_20190816_20200827_02_T1')
def readtiff(fileName):
    """
        输入:影像文件名
        输出:numpy格式数据
    """
    dataset = gdal.Open(fileName)
    im_width = dataset.RasterXSize #列数
    im_height = dataset.RasterYSize #行数
    im_bands = dataset.RasterCount #波段数
    im_data = dataset.ReadAsArray(0,0,im_width,im_height)
    return im_data
def stretch_2_precentage(gray):
    """
        输入:灰度图像
        输出:2%线性拉伸之后的图像
    """
    high_value = np.percentile(gray, 98)#98%
    low_value = np.percentile(gray, 2)#2%
    min_v = gray.min()
    max_v = gray.max()
    streched_gray = np.clip(gray, a_min=low_value, a_max=high_value) 
    results = ((streched_gray - low_value)/(high_value - low_value))
    return results
data = readtiff(r'LC08_L2SP_132027_20190816_20200827_02_T1_QA_PIXEL.TIF')
plt.figure(figsize=(10,10))
plt.imshow(stretch_2_precentage(data),'gray')
plt.axis("off")
plt.show()

标准假彩色合成波段
图2 标准假彩色合成波段
QA波段
图3 QA波段


QA波段介绍

QA波段即Quality Assessment Band,是利用FMASK算法得到的影像质量评估数据,对比图2、图3不难发现其中包含了云、云影、卷云、水体等信息。该波段与其他常用波段的差异主要在,(1)QA波段是一种产品,是FMASK算法得到的地物信息产品,其他常用波段是观测数据。(2)QA波段数据是间断的,其数值的大小没有可比较的意义。而可见光、红外等波段是连续,其数值的大小表示了地物反射率、发射率的大小。(3)QA波段是二进制数据转十进制实现的。赋予二进制不同位置数值的含义,最后转成十进制。其思想与机器学习中的one-hot编码有异曲同工之妙。
表1 QA波段各位数信息

<think>好的,我现在需要帮助用户了解如何从Sentinel-2遥感数据中提取波段反射率值。首先,我得回顾一下用户提供的引用内容,确保答案准确并引用正确的来源。 用户提到的引用[2]和[3]提到下载Sentinel-2数据以及加载和过滤图像数据的过程。首先,用户需要从欧空局网站下载Level-2A数据,因为Level-2A是经过大气校正的表面反射率数据,可以直接使用,而Level-1C是未经校正的,需要自行处理。所以,第一步应该建议用户下载正确的数据级别。 接下来,引用[5]提到ENVI教程中如何读取Sentinel-2数据并处理波段组合。用户可能需要使用软件工具如ENVI或者SNAP来处理数据。因此,步骤中需要包括加载数据、选择正确波段的部分。例如,Level-2A数据已经分成了不同分辨率的波段,需要组合或重采样到同一分辨率,方便后续分析。 然后,引用[3]中提到的过滤图像数据,根据云覆盖和日期选择合适的影响。这一步很重要,因为云层会影响反射率的准确性。用户需要了解如何应用云掩膜,可能使用QA波段来识别和去除云区域。此外,Sen2Res插件(引用[4])虽然处理时间长,但能提升分辨率,可能在需要高精度时使用,但需权衡时间成本。 在处理反射率值时,可能需要使用编程工具如Python的GDAL或rasterio库来读取波段数据,并转换为反射率值。或者,使用SNAP软件中的工具直接导出数值。这里要确保用户知道如何访问每个波段的数值,可能需要归一化处理,比如乘以比例因子(如0.0001)将DN值转换为反射率。 最后,验证数据的准确性很重要,比如通过查看元数据中的比例因子,或者与已知地表反射率数据对比。同时,引用[4]提到的Sen2Res插件可以用于超分辨率处理,但需注意处理时间。 总结步骤应该是:下载Level-2A数据,加载并预处理(包括云掩膜、波段选择),使用软件或代码提取反射率值,验证数据,并考虑是否需要分辨率增强。同时,要提醒用户注意不同波段的分辨率差异,可能需要重采样。</think>### 从Sentinel-2遥感数据中提取波段反射率值的步骤 以下是基于Sentinel-2数据特性及引用内容的操作流程: 1. **获取Sentinel-2 Level-2A数据** - Level-2A数据已通过大气校正,直接提供地表反射率值[^3]。用户需从欧空局官网或Copernicus Open Access Hub下载Level-2A产品(而非Level-1C的原始辐射亮度数据)[^2][^5]。 2. **数据加载与预处理** - 使用遥感软件(如ENVI、SNAP或Python库)加载数据。 - 根据需求选择波段: - 10m分辨率:B2(蓝)、B3(绿)、B4(红)、B8(近红外) - 20m分辨率:B5-B7、B8A、B11-B12(需重采样至10m或20m统一分辨率)。 - 应用云掩膜:利用QA60波段质量标志)过滤云覆盖区域。 3. **提取反射率值** - **手动操作**(以SNAP为例): 1. 打开`.SAFE`文件,选择目标波段。 2. 通过“Pixel Geo-Information”工具点击图像位置,直接读取反射率值(单位为无量纲,范围0–1)。 - **编程实现**(Python示例): ```python import rasterio # 打开波段文件(例如B04_10m.jp2) with rasterio.open('B04_10m.jp2') as src: band_data = src.read(1) # 读取为NumPy数组 reflectance = band_data * 0.0001 # 应用比例因子转换为反射率 ``` > **注**:反射率值通常需乘以元数据中的比例因子(如0.0001)。 4. **数据验证与后处理** - 对比同一区域不同时相的反射率曲线,验证合理性。 - 如需增强分辨率,可使用Sen2Res插件进行超分辨率合成(需权衡处理时间)[^4]。 --- ###
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值