
似三角形是几何世界中的一个基本计算工具,它可以有效的把线段和角结合到一起。因此掌握好相似三角形就如同在算数中熟练运用四则运算一样。
姜姜老师整理汇总了所有关于相似模型的典型例题,希望同学们在后续学习考试过程遇到关于相似模型的例题有所帮助。
平行A字型
原理证明:
如图:△ABC,当DE∥BC时。△ADE∽△ABC。
证明:∵DE∥BC,∴∠ADE=∠ABC,∠A=∠A。∴△ADE∽△ABC。

典型例题:
如图,在△ABC中,D,E分别是AB,AC的中点,下列说法中不正确的是( )


故选:A.
同步练习:
如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是( )


【分析】根据中位线的性质定理得到DE∥BC,DE=½BC,再根据平行线分线段成比例定理和相似三角形的性质即可判定.
故选:C.
平行X型(平行8字形)
原理证明:
如图:△ABC,当DE∥BC时。△ADE∽△ACB。
证明:∵DE∥BC,∴∠ADE=∠ACB,∠A=∠A。∴△ADE∽△ACB。

典型例题:
如图,在△ABC中,点E是线段AC上一点,AE:CE=1:2,过点C作CD∥AB交BE的延长线于点D,若△ABE的面积等于4,则△BCD的面积等于( )

A.8 B.16 C.24 D.32
【分析】先由CD∥AB,证得△ABE∽△CDE,再根据已知条件及相似三角形的性质得出S△CDE的值,然后根据△BCE中CE边上的高和△ABE中AE边上的高相等及CE=2AE,得出S△BCE的值,最后利用关系式S△BCD=S△CDE+S△BCE,可得答案.
故选:C.
同步练习:
如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△DOE与S△COE的比是( )

A.1:25 B.1:5 C.1:4 D.1:3
故选:B.
如图,平行四边形ABCD的对角线AC、BD交于点O,点E为BC的中点,连接AE交BD于点F,若OF=1,则BF的长为( )

A.2 B.3 C.3/2 D.4
故选:A.