对坐标的曲线积分求做功_《对坐标的曲线积分》知识点与公式总结

本文详细介绍了对坐标的曲线积分在求变力做功中的应用,包括公式推导、积分性质和计算方法。同时,讨论了两类曲线积分的关系及其在物理中的应用,如环量和流量的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、对坐标的曲线积分的物理意义

1.变力沿曲线作功

某一物体沿着位于力场

内的路径ΓA→B从A移动到B,则力场对该物体所做的功基于“元素法”可得积分模型为

其中ds=(△x,△y,△z)为所取弧长微元ds从运动起点(x,y,z)到终点(x+△x,y+△y,z+△z)的位移,该微元段的力近似为该微元中任意点的力.这样由数量积的物理意义,可以得到如上的积分模型(分割取近似,做和求极限),并根据求和的性质可得

对于平面力场和平面运动路径:

则物体在力场F中沿曲线路径LA→B从A移动到B作功的计算公式

2.相关计算性质

(1)积分的方向性:由物理上作功的方向性,有

(2)方向的一致性:对于曲线分段积分的可加性,注意保证方向的一致性,其起点、终点首尾相接。

(3)注意使用图形的对称性要考虑方向也要求对称,即关于坐标轴折叠图形与方向要能完全重合,这个时候可以考虑“偶零奇倍”,同样“轮换对称性”为反轮换对称性。由于条件限制很容易用错,所以一般不使用!

二、对坐标的曲线积分的基本计算方法的计算思路与

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值