一、对坐标的曲线积分的物理意义
1.变力沿曲线作功
某一物体沿着位于力场
内的路径ΓA→B从A移动到B,则力场对该物体所做的功基于“元素法”可得积分模型为
其中ds=(△x,△y,△z)为所取弧长微元ds从运动起点(x,y,z)到终点(x+△x,y+△y,z+△z)的位移,该微元段的力近似为该微元中任意点的力.这样由数量积的物理意义,可以得到如上的积分模型(分割取近似,做和求极限),并根据求和的性质可得
对于平面力场和平面运动路径:
则物体在力场F中沿曲线路径LA→B从A移动到B作功的计算公式
2.相关计算性质
(1)积分的方向性:由物理上作功的方向性,有
(2)方向的一致性:对于曲线分段积分的可加性,注意保证方向的一致性,其起点、终点首尾相接。
(3)注意使用图形的对称性要考虑方向也要求对称,即关于坐标轴折叠图形与方向要能完全重合,这个时候可以考虑“偶零奇倍”,同样“轮换对称性”为反轮换对称性。由于条件限制很容易用错,所以一般不使用!
二、对坐标的曲线积分的基本计算方法的计算思路与