机器学习(3)-逻辑回归

Sigmoid函数

  • g(z)=11+ez
  • x取值为任意实数,y取值为[0,1]
  • 看成是把实数映射成一个概率值,可用作分类任务

数学推导

  • 预测函数: hθ(x)=g(θTx)=11+eθTx
  • θTx 表示原假设函数的参数矩阵*特征
  • 二分类任务中y的取值为1或者0,所以有:
    P(y=1|x;0)=hθ(x)
    P(y=0|x;0)=1hθ(x)
    整合后: P(y|x;θ)=(hθ(x))y(1hθ(x))1y
    如果看不明白可以把y=1和y=0分别代入,即可得到原式子

  • 似然函数
    类似线性回归做似然函数的处理
    这里写图片描述

  • 求导过程
    这里写图片描述

  • 参数更新: θj:=θjα1mmi=1(hθ(xi)yi)xji

    • ”:=”表示赋值
    • θj 表示第j个参数
    • xi 表示第i个样本
    • hθ(xi) 表示将第i个样本输入预测函数得到的结果
    • yi 表示第i个样本的label值
    • xji 表示第i个样本的第j个特征
  • softmax多分类
    这里写图片描述

代码实践

  • 读取数据和数据处理
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline 
import os
# os.sep是目录连接符lunux下是/ ;window下是\\,读取是相对路径 data\\LogiReg_data.txt
path = 'data'+os.sep+'LogiReg_data.txt'
path = 'data' + os.sep + 'LogiReg_data.txt'
#header表示第一行是不是列名
pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
# 查看头部
pdData.head()
# 查看矩阵的shape
pdData.shape

positive = pdData[pdData['Admitted'] == 1] # returns the subset of rows such Admitted = 1, i.e. the set of *positive* examples
negative = pdData[pdData['Admitted'] == 0] # returns the subset of rows such Admitted = 0, i.e. the set of *negative* examples
# 将数据再画布上查看,直观看下数据的分布
fig, ax = plt.subplots(figsize=(10,5))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')

这里写图片描述

这里为数据加入列 x0=1 的特征

pdData.insert(0, 'Ones', 1)
# 获取特征矩阵和标签矩阵
cols = orig_data.shape[1]
X = orig_data[:,0:cols-1]
y = orig_data[:,cols-1:cols]
# 初始化参数矩阵
theta = np.zeros([1, 3])
  • 逻辑回归的目标

    • 建立分类器,求出三个参数 θ0,θ1,θ2
      • 因为只有两个特征,假设的函数是: y=θ0+θ1x1+θ2x2
      • 为了计算,我们会引入 x0=1 ,代码中的操作就是增加一列特征,值全部为1
      • 所以有 y=θ0x0+θ1x1+θ2x2=θTx
  • 需要实现的模块

    • 实现的目标函数: θj:=θjα1mmi=1(hθ(xi)yi)xji
    • sigmoid函数: hθ(x)=g(θTx)=11+eθTx
    • model,矩阵乘法部分: θTx
    • cost,损失函数,对数似然函数的负值的平均值,用于评测算法,越小越好
    • gradient:计算梯度,即每个参数的梯度方向
      Jθj=1mi=1n(yihθ(xi))xij
    • descent:参数更新
    • 计算精度
# sigmoid
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# model
def model(X, theta):
    return sigmoid(np.dot(X, theta.T))

损失函数
将对数似然函数去负号
D(hθ(x),y)=ylog(hθ(x))(1y)log(1hθ(x))
求平均损失
J(θ)=1nni=1D(hθ(xi),yi)

def cost(X, y, theta):
    left = np.multiply(-y, np.log(model(X, theta)))
    right = np.multiply(1 - y, np.log(1 - model(X, theta)))
    return np.sum(left - right) / (len(X))

计算梯度
Jθj=1mni=1(yihθ(xi))xij

def gradient(X, y, theta):
    grad = np.zeros(theta.shape)
    error = (model(X, theta)- y).ravel()
    for j in range(len(theta.ravel())): #for each parmeter
        term = np.multiply(error, X[:,j])
        grad[0, j] = np.sum(term) / len(X)

    return grad

比较3中不同梯度下降方法

STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2

def stopCriterion(type, value, threshold):
    #设定三种不同的停止策略
    if type == STOP_ITER:        return value > threshold
    elif type == STOP_COST:      return abs(value[-1]-value[-2]) < threshold
    elif type == STOP_GRAD:      return np.linalg.norm(value) < threshold

import numpy.random

#洗牌,每次梯度下降取样本前要把数据集的顺序打乱
def shuffleData(data):
    # 随机排序函数shuffle
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols-1]
    y = data[:, cols-1:]
    return X, y
import time
# 参数迭代更新
def descent(data, theta, batchSize, stopType, thresh, alpha):
    # 梯度下降求解

    init_time = time.time()
    i = 0 # 迭代次数
    k = 0 # batch
    X, y = shuffleData(data)
    grad = np.zeros(theta.shape) # 计算的梯度
    costs = [cost(X, y, theta)] # 损失值

    while True:
        grad = gradient(X[k:k+batchSize],y[k:k+batchSize], theta)
        k += batchSize
        if k >= n:
            k = 0
            X, y = shuffleData(data) #重新洗牌
        theta = theta - alpha*grad
        costs.append(cost(X, y, theta)) # 保存损失值
        i += 1

        if stopType == STOP_ITER:       value = i
        elif stopType == STOP_COST:     value = costs
        elif stopType == STOP_GRAD:     value = grad
        if stopCriterion(stopType, value, thresh): break

    return theta, i-1, costs, grad, time.time()-init_time
# 此处的代码是将迭代的过程以图表的形式展示
def runExpe(data, theta, batchSize, stopType, thresh, alpha):
    #import pdb; pdb.set_trace();
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled"
    name += " data - learning rate: {} - ".format(alpha)
    if batchSize==n: strDescType = "Gradient"
    elif batchSize==1:  strDescType = "Stochastic"
    else: strDescType = "Mini-batch ({})".format(batchSize)
    name += strDescType + " descent - Stop: "
    if stopType == STOP_ITER: strStop = "{} iterations".format(thresh)
    elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh)
    else: strStop = "gradient norm < {}".format(thresh)
    name += strStop
    print ("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
        name, theta, iter, costs[-1], dur))
    fig, ax = plt.subplots(figsize=(12,4))
    ax.plot(np.arange(len(costs)), costs, 'r')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title(name.upper() + ' - Error vs. Iteration')
    return theta

不同迭代策略

  • 每次迭代都遍历所有样本
#选择的梯度下降方法是基于所有样本的
n=100
runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)

这里写图片描述
!这里的迭代次数过少,修改阈值为1E-6,迭代次数为110000次
会发现瞬时值会再次降低

runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)

这里写图片描述

这种策略虽然准确度较高,但是迭代次数多,计算量大

  • 随机梯度下降:每次只选取一个样本进行计算
runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)

这种策略计算速度快,但是不稳定,需要很小的学习率

  • 小批量梯度下降
runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)

实践中常用的策略,这种算法需要对数据进行预处理,数据标准化

精度预测

#设定阈值,设定0.5,预测概率大于等于0.5的值为1,小于0.5的值为0,来进行分类
def predict(X, theta):
    return [1 if x >= 0.5 else 0 for x in model(X, theta)]

scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
predictions = predict(scaled_X, theta)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值