机器学习(5)-决策树与集成算法

1.什么是决策树

  • 从树的根节点开始一步步(决策)走到子节点的树型结构
  • 假如我门需要解决谁愿意和我们一起玩游戏的问题,并且有如下的数据
    这里写图片描述
    那么我们可以构造一个如下的决策树来预测结果
    这里写图片描述

2.决策树的构建

  • 决策树定义很简单,关键是我们如何构建一棵决策树,为什么要把年龄当成树节点,把性别当成子节点?我们分配的标准就是,使用这个分类器后,使得数据的混乱度最大的降低。我们用熵来表示混乱程度度,

    • 表示物体的混乱程度
    • 表示函数: Info(D)=ni=1pilog2pi (小概率事件越多,熵越大)
  • 信息增益
    • 表示函数 InfoA(D)=vj=1|Dj||D|Info(Dj)
    • Gain=Info(D)InfoA(D)
    • 表示每次分类后数据混乱度下降的程度
    • 遍历每种分类的信息增益率,把最大的当初当次分类的分类器
    • 连续值离散化:如果是连续值,可以把数据进行切分,进行离散化,比如年龄,我们可以在15岁分割,也可以在38 岁进行分割,计算所有可能性,取结果最好的(在实际中,更多的是使用随机切分,遍历所有可能回导致巨大的计算量)
  • C4.5算法对ID3算法的优化:
    • ID3算法中,如果是ID列,数值从1~n,那么分成n类后,它的信息增益是最高的,然而对于实际情况,这种分类是没有任何意义的,所以在C4.5算法中,提出了信息增益率的概念来解决这个问题
    • 信息增益率
      • 分裂信息: SplitInfoa(D)=vj=1|Dj||D|log2(|Dj||D|)
      • GainRatio(A)=Gain(A)SplitInfo(A)
  • CART:GINI系数
    • Gini(D)=1mi=1p2i

决策树剪枝

  • 剪枝原因:过拟合风险大
  • 预剪枝
    • 限制深度,页子节点个数,页子节点样本数,信息增益量
    • 可以选择特征??
  • 后剪枝
    • 在决策树构建完成之后,通过一定的标准决定剪掉哪些枝叶

集成算法(Ensemble Learning)

  • Bagging:选了多个分类器取平均值(典型例子:随机森林)
    • 数据随机,特征随机
    • 优点:
      • 处理高纬度,不用特征选择
      • 可以计算出特征的重要程度,通过破坏特征,比较之间的差值
      • 并行运算,速度快
      • 可视化展示
    • 一般生成100-200棵树,就好,因为树多了效果不一定好
  • Boosting(提升模型):从弱学习开始(AdBoost,xgBoost),串行计算
  • Stacking(堆叠模型):聚合多个分类
    • 通常套路:使用多个算法计算出结果,把结果作为作为输入再次使用一个算法计算结果
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值