batch size 训练时间_batch_size是否越大越好?

当初随机梯度下降法和mini_batch梯度下降法的面世,是为了优化批量梯度下降法计算效率缓慢且对gpu显存要求较高的问题。那么,在显存容量支持的前提下,是否batch_size越大越好呢?

也不是的。较大的batch_size容易使模型收敛在局部最优点,而使用小batch甚至单个数据训练时,相当于人为加入噪声,使模型走出鞍点,在更大的范围内寻找收敛点。也有人指出,选用large_batch的泛化能力较差。

可以采用以下策略:

  1. 当有足够算力时,选取batch size为32或更小一些。
  2. 算力不够时,在效率和泛化性之间做trade-off,尽量选择更小的batch size。
  3. 当模型训练到尾声,想更精细化地提高成绩(比如论文实验/比赛到最后),有一个有用的trick,就是设置batch size为1,即做纯SGD,慢慢把error磨低。

参考链接 https://www.zhihu.com/question/61607442/answer/440944387 及其他相关回答。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值