0 引言
目前在生产实践中,圆度误差的测量方法有半径变化测量法、两点法、三点法和坐标测量法等几种[1]。其中,圆度仪、三坐标测量机对圆度的评定和计算是通过圆度仪、三坐标测量机等精密仪器自带的计算程序来完成。工作效率高,但成本高,一般企业和高校均无此设备。用V形块和两点法测量圆度误差只是近似的测量,只适用于低精度零件的检验[2]。
而用分度头尤其是光学分度头测量圆度误差,它的测量精度很高(仅次于圆度仪测量法),而且这种设备使用普遍,适用范围广。但以往数据处理多采用作图法,所需时间较长,且受到基圆半径的抑制,精度不高,较为繁琐[3]。也可以用一些高级语言VC, VB, FORTRAN等求解,但相应的计算程序编制的难度较大,而且很容易出错。
笔者编制了基于MATLAB 7的圆度误差数据处理软件,求解过程简单,计算精度高,并开发了友好界面来评定圆度误差,使数据处理更方便可靠。
1 圆度误差的数据处理与评定[4]
圆度误差[5]是指回转体(圆柱、圆锥、圆球)同一横截面内(径向截面,即垂直于轴线或通过球心的截面)被测实际圆对其理想圆的变动量。在GB 7234)875圆度测量术语、定义及参数6中,圆度误差的评定方法有:最小区域法、最小二乘圆法、最小外接圆法、最大内接圆法。
1.1 最小区域圆法
GB 1598)805形状和位置公差一检测规定6中提出的/最小条件原则0,即评定时被测要素相对其理想要素的最大变动量应为最小[4]。采用基于/最小条件原则0的最小区域圆法评定圆度误差见图1。
图中O为分度头回转中心,即坐标原点,设各测点的直角坐标为Pi(xi,yi),理想圆的圆心为C(xc,yc)。计算圆度误差的主要任务就是计算出理想圆的圆心位置。若从该圆心到轮廓最远点和最近被测点的半径
满足最小化时,F(x,y)的(x,y)即为理想圆的圆心C(xc,yc),且该二元函数F(x,y)的最小值即为圆度误差。因此圆度误差的评定就转化为求二元函数F(x,y)的最小值问题。
你没有登陆,无法阅读全文内容
您需要 登录 才可以查看,没有帐号? 立即注册