AB testing之两大陷阱

今天主要讲讲 primacy effect & novelty effect 在 AB testing中产生的陷阱

背景知识:

什么是Ab Testing?

当遇到典型的产品或工程组织时,团队成员经常会怀疑他们所做的事情是否产生了影响,或者他们在许多不同的设计中所做的选择,是否是最好的。当这些团队想要以数据为基础来影响决策方向时,AB测试是第一步。

AB测试是一种方法,通过向客户或潜在客户展示不同版本的功能、页面、按钮等,并通过一些指标(点击、购买、响应行动等)来评估交互的质量。任何时候,如果你想测试某个东西的多个变体,AB测试都是一个很好的选择。

那么接下来,进入正题。

primacy effect — 首位效应。即:先入为主。

novelty effect — 新奇效应。即:新鲜感。

当产品发生改变时,用户通常会有以下2种反应。

反应1:在习惯了之前的产品后,突然被改变,用户会本能抗拒突然的改变,拒绝新的功能/样式,这就叫 primacy effect (or change aversion)。

反应2:在对新鲜事情的好奇心驱使下,用户对新版本功能/样式十分感兴趣。会激发起大家的好奇心,不断探索新功能。这就叫novelty effect。

那么无论以上哪种反应,都会使得实验结果发生偏差。

尤其是在实验初期,由于人生的2种不同反应产生的较大数据偏差。会使得最开始的metric数据变化并不能够持久。

这也就能解释为什么有的项目,在实验初期,数据表明效果不错,然而在真正放量到100%后,数据显示效果并不如abtesting阶段那么好。

因为随着时间的推移,novelty effect效果会越来低。直到最后消失。

那么如何应对这2种现象导致的数据偏差呢?

方案1:abtesing阶段只选择新用户群体定向投放。

针对新用户来说,完全不存在primacy effect & novelty effect。

方案2:数据隔离对比。

针对新老用户均投放。但是进行数据隔离对比。

将新用户的结果 与 老用户结果进行对比。偏差即为primacy effect & novelty effect产生的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hera酱

感谢你为测试技术发展做的贡献~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值