今天主要讲讲 primacy effect & novelty effect 在 AB testing中产生的陷阱
背景知识:
什么是Ab Testing?
当遇到典型的产品或工程组织时,团队成员经常会怀疑他们所做的事情是否产生了影响,或者他们在许多不同的设计中所做的选择,是否是最好的。当这些团队想要以数据为基础来影响决策方向时,AB测试是第一步。
AB测试是一种方法,通过向客户或潜在客户展示不同版本的功能、页面、按钮等,并通过一些指标(点击、购买、响应行动等)来评估交互的质量。任何时候,如果你想测试某个东西的多个变体,AB测试都是一个很好的选择。
那么接下来,进入正题。
primacy effect — 首位效应。即:先入为主。
novelty effect — 新奇效应。即:新鲜感。
当产品发生改变时,用户通常会有以下2种反应。
反应1:在习惯了之前的产品后,突然被改变,用户会本能抗拒突然的改变,拒绝新的功能/样式,这就叫 primacy effect (or change aversion)。
反应2:在对新鲜事情的好奇心驱使下,用户对新版本功能/样式十分感兴趣。会激发起大家的好奇心,不断探索新功能。这就叫novelty effect。
那么无论以上哪种反应,都会使得实验结果发生偏差。
尤其是在实验初期,由于人生的2种不同反应产生的较大数据偏差。会使得最开始的metric数据变化并不能够持久。
这也就能解释为什么有的项目,在实验初期,数据表明效果不错,然而在真正放量到100%后,数据显示效果并不如abtesting阶段那么好。
因为随着时间的推移,novelty effect效果会越来低。直到最后消失。
那么如何应对这2种现象导致的数据偏差呢?
方案1:abtesing阶段只选择新用户群体定向投放。
针对新用户来说,完全不存在primacy effect & novelty effect。
方案2:数据隔离对比。
针对新老用户均投放。但是进行数据隔离对比。
将新用户的结果 与 老用户结果进行对比。偏差即为primacy effect & novelty effect产生的影响。