在matlab中quiver函数,quiver()函数

1.

一般用于绘制二维矢量场图,函数调用方法如下:

该函数展示了点(x,y)对应的的矢量(u,v)。其中,x的长度要求等于u、v的列数,y的长度要求等于u、v的行数。在绘制图像的过程中,

下面举几个例子:

例1:一个最简单的例子,该二维矢量场图中的矢量皆从(0,0)出发,分别指向(1,0) 、(-1,0) 、(0,1) 、(0,-1)。

画出下图

51b271269180d537cae3b2701cf97bd7.png

但我们发现箭头并没有完全指到(1,0) 、(-1,0) 、(0,1) 、(0,-1) 。如果需要箭头完全指到(1,0) 、(-1,0) 、(0,1) 、(0,-1),我们需要改变scale参数,将其设为1。参考方法如下:

画出图像如下 :

15c906bc13ee9329b66cd8ad8b52bff0.png

当然,也可以改变颜色。改变颜色可以参考LineSpec的设置,参考代码如下:

画出图像如下:

158a8935fb19a890a134431650ad2097.png

例2:(参考MathWorks):已知u=ycosxv=ysinxv=ysinx

画出下图:

8d54d7df1e471506a8bb57c016bf049b.png

用法与quiver类似,用于三维矢量场图的绘制。

例3: (参考MathWorks)绘制z=y2x2

画出下图:

b045431a906af0bcdef6385a2e899820.png

3.dfield与pplane(多应用于常微分方程)

dfield与pplane的原作者是Rice University的John C. Polking,用于解决涉及常微分方程的问题,比较方便,这里可以下载dfield与pplane的.m文件

在MATLAB中调用dfield,呈现 :

201f5ebbb2059fc2e4ddcc476d2375e2.png

如果我们要绘制常微分方程x′=x2t

3e2127c17d0db3e4908c15a56e7bca5e.png

在MATLAB中调用pplane,呈现

60e7d2a4c7864d35d9481df6a913db0b.png

以默认的微分方程为例,可以绘制矢量场图:

2a4fd0642c1949945ebb7406436b7ca3.png

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页