主成分分析法stata命令_主成分分析法(PCA)推导

主成分分析(PCA)是一种常见的无监督高维数据降维方法,用于最大化保留原始数据的方差。文章介绍了PCA的基本思想,包括通过找到新坐标系的标准正交基进行降维,并通过拉格朗日乘子法确定最优特征向量。内容还涉及如何在Stata中应用PCA进行数据处理。
摘要由CSDN通过智能技术生成

e3eb30a7e076e74f4a70f995c850ae9e.png

主成分分析法(principal component analysis, PCA)是最常用的无监督高维数据降维方法之一,它旨在降维的过程中保留原数据中最重要的几个分量,从而达到最大化原数据方差的作用。几乎所有数据降维方面研究都要用来作为比较重要的方法。


原文: Ph0en1x Notebook

主成分分析的基本思想就是在原有样本的n维空间内再建立一个d维线性空间,用n个标准正交基进行重新映射,然后选取其中的d'个正交基进行保留,而在这d'个坐标轴上的坐标值就是映射到低维后的坐标。而推导的目的就是为了确定如何确定这这d个标准正交基以及如何选取它们。就如下图(图片来自于网络)一样,将二维空间内的点映射至一维空间,最终选择较长的那条向量进行投影映射。

88a3ac9146ca71c93a70739cfe2c4732.png
  1. 首先,需要将手头需要降维的数据进行中心化,使样本中心点为原点

### 如何在STATA中执行主成分分析PCA) #### 准备工作 为了确保数据分析的有效性和准确性,在开始主成分分析之前,需准备好所需的数据集并清理数据。这一步骤包括但不限于删除缺失值、异常值处理以及标准化数值等操作[^1]。 #### 执行主成分分析命令 一旦数据准备就绪,可以通过输入`pca varlist`来启动主成分分析过程,其中`varlist`代表想要纳入分析的一系列变量名称。此命令将会计算这些选定变量之间的协方差矩阵,并基于该矩阵求解特征根与对应的特征向量,进而确定各个主成分的方向及其贡献率。 对于希望指定保留特定数量的主成分的情况,可以使用带有选项的形式调用函数,比如: ```stata pca varlist, components(#) ``` 这里的`components(#)`, `#`表示期望获得的具体主成分数目;或者依据累积百分比选择足够的主成分以覆盖大部分原始信息变异情况时可采用如下方式设置阈值: ```stata pca varlist, mineigen(real) ``` 此处`mineigen(real)`用于定义最小特征值标准,通常取大于等于1作为默认准则之一[^4]。 #### 解读结果 完成上述步骤后,将得到一系列关于主成分的信息输出,其中包括每个主成分所能解释总方差的比例、累计比例以及其他辅助判断指标。此外,还可以查看旋转后的因子载荷矩阵以便更好地理解各主成分背后的实际意义[^5]。 通过以上方法可以在STATA环境中顺利开展主成分分析任务,帮助研究人员有效降低数据维度的同时挖掘潜在的重要模式和趋势[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值