主成分分析法stata命令_主成分分析法(PCA)推导

主成分分析(PCA)是一种常见的无监督高维数据降维方法,用于最大化保留原始数据的方差。文章介绍了PCA的基本思想,包括通过找到新坐标系的标准正交基进行降维,并通过拉格朗日乘子法确定最优特征向量。内容还涉及如何在Stata中应用PCA进行数据处理。
摘要由CSDN通过智能技术生成

e3eb30a7e076e74f4a70f995c850ae9e.png

主成分分析法(principal component analysis, PCA)是最常用的无监督高维数据降维方法之一,它旨在降维的过程中保留原数据中最重要的几个分量,从而达到最大化原数据方差的作用。几乎所有数据降维方面研究都要用来作为比较重要的方法。


原文: Ph0en1x Notebook

主成分分析的基本思想就是在原有样本的n维空间内再建立一个d维线性空间,用n个标准正交基进行重新映射,然后选取其中的d'个正交基进行保留,而在这d'个坐标轴上的坐标值就是映射到低维后的坐标。而推导的目的就是为了确定如何确定这这d个标准正交基以及如何选取它们。就如下图(图片来自于网络)一样,将二维空间内的点映射至一维空间,最终选择较长的那条向量进行投影映射。

88a3ac9146ca71c93a70739cfe2c4732.png
  1. 首先,需要将手头需要降维的数据进行中心化,使样本中心点为原点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值