聚类轮廓系数java_轮廓系数的应用:kmeans聚类理论篇K的选择(轮廓系数)

本文介绍了KMeans聚类算法的原理,包括其线性的时间和空间复杂度,以及算法的收敛性。讨论了如何通过轮廓系数评估聚类效果,该系数衡量了数据点与所在簇的凝聚度和分离度。还探讨了K值的选择策略,建议通过多次运行和比较轮廓系数来确定最佳K值。文章提供了R语言实现KMeans的例子,展示了聚类完成后的多维定标可视化结果。
摘要由CSDN通过智能技术生成

前言javascript

kmeans是最简单的聚类算法之一,可是运用十分普遍。最近在工做中也常常遇到这个算法。kmeans通常在数据分析前期使用,选取适当的k,将数据分类后,而后分类研究不一样聚类下数据的特色。html

本文记录学习kmeans算法相关的内容,包括算法原理,收敛性,效果评估聚,最后带上R语言的例子,做为备忘。java

算法原理算法

kmeans的计算方法以下:shell

1 随机选取k个中心点app

2 遍历全部数据,将每一个数据划分到最近的中心点中机器学习

3 计算每一个聚类的平均值,并做为新的中心点ide

4 重复2-3,直到这k个中线点再也不变化(收敛了),或执行了足够多的迭代函数

时间复杂度:O(I*n*k*m)post

空间复杂度:O(n*m)

其中m为每一个元素字段个数,n为数据量,I为跌打个数。通常I,k,m都可认为是常量,因此时间和空间复杂度能够简化为O(n),即线性的。

算法收敛

从kmeans的算法能够发现,SSE实际上是一个严格的坐标降低(Coordinate Decendet)过程。设目标函数SSE以下:

SSE(59157e8da2ea4ccd90879455.html,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值