本文是深度科普系列《从线性代数到量子力学》的第5课。
了解本系列及本专栏其他文章,请收藏目录:
目录:从线性代数到量子力学zhuanlan.zhihu.com或关注专栏:
在数学之外体验数学zhuanlan.zhihu.com0) 前情提要
在本系列的前3课(请在专栏文章目录中寻找 )中,我们通过几个虚构的思想实验,理解了量子力学特有的叠加态,并对不确定性原理进行了一次初体验。
而在第4课中,我们来到了真实的物理世界,回顾了量子力学史上最重要的实验之一:斯特恩-盖拉赫(Stern-Gerlach)实验(以下简称SG实验 )。
这个实验通过对银原子磁矩的探测,向我们展示了量子叠加态的真实存在。
但第4课介绍的,还仅仅是SG实验的“单机版”,而本文将继续介绍SG实验更为精彩的“联机版”:级联SG实验。
我们会发现,两个或多个SG实验装置串联到一起之后,会有更神奇的现象发生。
1) 级联SG实验:版本1.0
我们知道,单机版SG实验中,银原子分成了上下两束,说明测量银原子
我们将自旋磁矩为
现在,我们将原来单机版实验装置中的接收屏撤掉,让其中处于
接下来,我们在这束银原子的前进方向上,放置另一个一模一样的SG实验装置,这个装置仍然具有沿着
为了方便表示,我们将上述实验装置化成抽象图:
现在问题来了:这束
经典直觉告诉我们:这束银原子具有确定的磁矩方向,即
而事实的确也是如此。
(就像我们在第3课的量子糖思想实验中看到的那样,当我们尝了一次量子糖的味道之后,只要闭上眼睛不去观察它的颜色,那么无论我们多少次将量子糖放进嘴里重复品尝,它的味道都不会变 )
只不过,这里所说的“确定的磁矩方向”,其实已经不是经典意义上的“确定”了,而应该从叠加态的角度去解释。课
我们在第4课中已经知道,当我们去测量银原子在
而我们在第1课中就已经知道,一个对象的任意量子态,都可以表示成某个物理量对应的一组(完备 )本征态的叠加。
用线性代数语言来说就是:任意向量都可以表示成某个线性算子的一组完备特征向量(也就是一组完备基底)的线性组合。
所以,银原子的任意量子态
(其中两个系数满足:
这对本征态本身也成立,比如对于处于
而根据我们在第2课中看到的系数的物理含义可知,系数的模方
于是,对于已经处于本征态
体现在实验中就是:原来向上偏转的银原子束,通过第二个
有了这种叠加态的思维,我们才能比较顺畅地理解下一个版本的联机实验。
2) 级联SG实验:版本2.0
这是级联SG实验中最重要的一个版本。
在这个版本中,我们将再次看见不确定性原理的影子。
首先,我们仍然从单机版的
实验的抽象图如下:
接下来,请各位猜一猜:处于
按照经典直觉,进入磁场的银原子具有确定的磁矩方向
这意味着,银原子会在
但实际结果却是,银原子又分裂成了两束,一束朝
也就是说,原本自旋磁矩处于
并且,如果我们将
是的,这必须又要用叠加态来解释了。
我们知道,“
于是,我们可以将版本2.0的SG实验结果转换成量子语言:
对
而
还记得我们在第3课的量子糖思想实验中,交替进行“看颜色”和“尝味道”两种行为时,发生的事情以及我们的解释吗?
(不记得的同学,建议先复习第3课内容 )
在这个级联SG实验中,我们可以将“测量
根据量子糖思想实验中的解释方式,我们可以推知:
换句话说就是:“
这才是这次级联SG实验结果的正确打开方式。
而根据“
于是我们可以进一步猜出它们之间的一种可能的关系:
(同时也可以得到:
根据这个关系,我们还可以看出,两组本征态在态空间中的“夹角”是45度。
而我们知道,在“真实物理空间”中,
于是我们又一次看到了在第4课中提到的自旋磁矩“在真实物理空间中的夹角
至于这背后是否有更精妙的数学结构,正如第4课所言,要到比较遥远的以后再揭晓答案了。
现在我们先记住这个关系就行。如果担心自己记不住,不妨来做个随堂练习巩固一下:
【练习5.1】
假设一个级联SG实验中,第一个装置是
(答案在文末附录中 )
暂时不想算的同学,可以跟着作者进入下一个版本的级联SG实验,它没有第二个版本那么烧脑,但依然很有意思。
3) 级联SG实验:版本3.0
这是一个有关“前世记忆”的实验,它是这样操作的:
先让银原子通过一个
这样做是为了看看这些银原子是否还“记得”自己在上次通过
已经有了量子思维的我们,可以很快得出结论:
通过第二个
也就是说,通过
是的,量子世界就是这么绝情却又让人着迷。
4) 结语和预告
通过第4课和第5课的介绍,我们完整地看到了一例发生在真实物理世界中的量子叠加现象,并且再次感受到了不确定性原理的影子。
但“自旋”这个概念还是离我们的经典世界比较遥远,我们其实一直盼望着想知道:
波粒二象性、波函数这些听起来更“量子”的概念,是怎么和态矢量联系起来的?
经典物理中那些常见物理量,比如时间、位置、能量、动量,该怎么从态矢量中得到?
那个定量描述不确定性原理的谜之公式:
从第6课开始的很长一段旅程里,我们将一步一步揭开这些谜底。
从线性代数到量子力学(6):量子力学原理初体验zhuanlan.zhihu.com而在进入下一个主题之前,我们还要趁热打铁,利用本课刚刚新鲜出炉的“自旋”的量子性质,来理解量子力学在信息学中的一个重要应用:量子加密。
它的一个最原始也最简单的版本,是一种不可被伪造的货币:量子货币。
欲知详情,请移步番外编:
从线性代数到量子力学(番外A):十分钟了解量子货币zhuanlan.zhihu.com附录:
练习5.1答案:
向上偏转(
(有两位同学同时最先给出正确答案:Andy, RD巨佬;回头会送上小礼物~ )