量子叠加态系数_反斗星学量子力学 2.2叠加态&薛定谔的猫

本文探讨了量子力学中的态叠加原理,通过电子双缝干涉实验阐述了波函数如何描述微观粒子的位置几率分布。态叠加原理表明,微观粒子可以处于多种状态的叠加,例如在猫的生死叠加态中,猫同时处于生和死的状态。狄拉克函数在此被提及,它是波函数的一种特殊形式,用于描述量子系统的状态。此外,文章还简要介绍了波函数的动量展开,揭示了量子世界中粒子状态的复杂性和奇妙特性。
摘要由CSDN通过智能技术生成

5b7346bed21392b2aa4ee8ae24d2fc13.png

我们知道波函数

刻画的,是一个在空间不同位置上(且随着时间变化的)几率分布。在前面的电子双缝干涉中,我们提到电子通过双缝后的波函数相当于它分别单独通过后的叠加,这是“波”特有的性质,即可加性。

态叠加原理

前面我们说了对微观客体的描述需要用到波函数,一个波函数对应一个态。(可以简单理解为几率分布的状态)

态叠加原理是指,如果

是体系的可能状态,那么它们的线性叠加
也是该体系的一个可能状态。

这句话看上去似乎没什么感觉,举个例子吧,还是电子双缝干涉:

19055a4669d7e3c65383dd95e095a225.png
电子通过双缝后打到后端的探测器上

在这个实验里面,电子的运动可以看成两个“态”的叠加态:电子只通过狭缝

后打到探测器上的态
,以及只通过狭缝
后打到探测器上的态
。即

因此,我们说电子“同时通过了”两个狭缝,似乎也是没什么不对的。值得注意的是,不能再用“电子是粒子”的思维去思考“1个电子为何可以通过2个狭缝”,因为我们现在,讨论的对象是微观客体,是德布罗意波,它的函数是一个(空间和时间上的)几率分布函数。

在空间中某处(如探测器上某一点P)找到粒子的概率就应该写作:

其中前面2项分别是电子穿过狭缝

出现在P点的几率密度,后面的括号内的项则表示相干项,正是由于这一项的存在使得电子出现的概率不是简单的相加,而是产生干涉条纹。
  • 注意:
    是有着明确的物理意义的。后面我们会看到,它可以表示两个态的重合程度/相关程度,也可以表示两个波函数的内积,还可以表示一个在另一个上的投影。(事实上就是同一个东西)

关于猫的生死叠加态

我们如果定义一只猫身上的所有粒子的波函数组成一个大的波函数

,那么对于这个大的波函数
,我们还可以定义相应的态,如
  • 将波函数
    定义为“生”态,即当某只猫的波函数
    时,猫是生的;
  • 将波函数
    定义为“死”态,即当某只猫的波函数
    时,猫是死的。

那么当某只猫的波函数是

的时候,猫便处于所谓的生死叠加态。注意这里实际上是波函数的线性叠加,因此我们很难在现实里面想象一只这样子的猫,但是在量子的世界里面,这是允许存在的。

7ef4f4babed257b82c30faaff481e418.png
既不是生的状态,也不是死的状态,是一个新的状态
  • 如果你把猫想象成粒子组成,你不能想象得出“生死叠加态”的猫身上每一个粒子是怎么运动的、位置在何处等特点(如心脏中的一个碳原子是否会随着心脏跳动做周期性振动?);
  • 如果你把猫看作是波——如果是波,对应的状态自然可以叠加——但是你真的可以把那么大一只猫跟你把石头扔进水里产生的波纹(而不是水!)进行联系吗?
  • 事实上正确的看法,没错,把猫身上每一个粒子都与德布罗意波的波函数对应起来,这样构建起“生”态和“死”态,进而才有叠加态的概念。和上一条类似,这一点是很难想象的,但是我们至少可以确定这一状态事实上是存在的。

不用急,“生死叠加态”的猫在自然界是不存在的,如果你不能理解,到后面第三章会进一步说明,当我们打开箱子的时候,到底发生了什么


狄拉克

函数

这里穿插介绍一下狄拉克函数。狄拉克函数是一个很简单的函数,它的定义是这样子的:

它可以想象成一个归一化后的高斯函数,其波包宽不断变窄形成的。

6db15d1b78e81fc52f99b4162a09d1c6.png
大致示意图(为了好看,这里图是画得夸张了的)

它其实可以写成这个形式:

意义是高斯函数的波包宽接近于0。它甚至还可以写成这个形式:

详细的推导过程可以参考曾谨言的讲义,但这些定义都不是重点,我们需要的其实是它们的性质。把

函数平移后可以得到
,有:

利用前面的形式不难证明。接下来课本上介绍平面波展开,本应该用到此处的函数,但本篇文章接下来不会涉及到具体计算,因此这一段算是为后文做一个小伏笔吧。


平面波展开

这里,“展开”是相对于叠加的概念而言的,既然有叠加,就自然有展开。关键在于,按什么展开,展开之后是什么样子的。比如,前面的

就是将猫态展开为生猫态和死猫态,它是按照人看上去是死是活来展开的,对于这种展开来讲,反而单个粒子的空间坐标是无关紧要的。

我们前面所说的波函数

,是依赖于坐标和时间自变量的。那么我们也可以按照动量展开,也就是展开成:

注意这里相较于前面在1.2那一篇文章提到的平面波函数,指数上的E*t项被合并到了前面的系数处。我们知道,动量的可取值也是连续且无穷的,正如坐标一样。因此,严格的写法应该是一个积分:

这里省略了一点推导过程和积分运算,我只是想在这里说明一下一般情况下波函数展开是一个什么操作,主要的展开方法和过程后面会简单提及。

细心的你可能注意到上面的式子

和课本上的
不一样,这里事实上我想说明的是,原来的坐标空间的波函数可以按照动量展开,而展开后的波函数可以看作是按照动量进行叠加。
(叠加,在离散的变量相当于加权求和
,对应到连续变量就是一个积分,只不过权重换成了函数

这次的内容里面加了一点点自己的理解,提醒一下,作者我本身学历不高,尝试用简单的话来说明一些问题的同时也可能会存在一些漏洞。而且我主要讲述的点是上课的时候没有领悟到的点,不一定适合所有人,也不一定是所谓的重点,或者难点,反而可能需要理解的内容偏多。(把好多个地方推到后面去讲,绝对不是我偷懒!是真的可以到后面继续深入了解!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值