我们知道波函数
态叠加原理
前面我们说了对微观客体的描述需要用到波函数,一个波函数对应一个态。(可以简单理解为几率分布的状态)
态叠加原理是指,如果
这句话看上去似乎没什么感觉,举个例子吧,还是电子双缝干涉:
在这个实验里面,电子的运动可以看成两个“态”的叠加态:电子只通过狭缝
因此,我们说电子“同时通过了”两个狭缝,似乎也是没什么不对的。值得注意的是,不能再用“电子是粒子”的思维去思考“1个电子为何可以通过2个狭缝”,因为我们现在,讨论的对象是微观客体,是德布罗意波,它的函数是一个(空间和时间上的)几率分布函数。
在空间中某处(如探测器上某一点P)找到粒子的概率就应该写作:
其中前面2项分别是电子穿过狭缝
- 注意:
是有着明确的物理意义的。后面我们会看到,它可以表示两个态的重合程度/相关程度,也可以表示两个波函数的内积,还可以表示一个在另一个上的投影。(事实上就是同一个东西)
关于猫的生死叠加态
我们如果定义一只猫身上的所有粒子的波函数组成一个大的波函数
- 将波函数
定义为“生”态,即当某只猫的波函数时,猫是生的;
- 将波函数
定义为“死”态,即当某只猫的波函数时,猫是死的。
那么当某只猫的波函数是
- 如果你把猫想象成粒子组成,你不能想象得出“生死叠加态”的猫身上每一个粒子是怎么运动的、位置在何处等特点(如心脏中的一个碳原子是否会随着心脏跳动做周期性振动?);
- 如果你把猫看作是波——如果是波,对应的状态自然可以叠加——但是你真的可以把那么大一只猫跟你把石头扔进水里产生的波纹(而不是水!)进行联系吗?
- 事实上正确的看法,没错,把猫身上每一个粒子都与德布罗意波的波函数对应起来,这样构建起“生”态和“死”态,进而才有叠加态的概念。和上一条类似,这一点是很难想象的,但是我们至少可以确定这一状态事实上是存在的。
不用急,“生死叠加态”的猫在自然界是不存在的,如果你不能理解,到后面第三章会进一步说明,当我们打开箱子的时候,到底发生了什么。
狄拉克
这里穿插介绍一下狄拉克函数。狄拉克函数是一个很简单的函数,它的定义是这样子的:
它可以想象成一个归一化后的高斯函数,其波包宽不断变窄形成的。
它其实可以写成这个形式:
意义是高斯函数的波包宽接近于0。它甚至还可以写成这个形式:
详细的推导过程可以参考曾谨言的讲义,但这些定义都不是重点,我们需要的其实是它们的性质。把
利用前面的形式不难证明。接下来课本上介绍平面波展开,本应该用到此处的函数,但本篇文章接下来不会涉及到具体计算,因此这一段算是为后文做一个小伏笔吧。
平面波展开
这里,“展开”是相对于叠加的概念而言的,既然有叠加,就自然有展开。关键在于,按什么展开,展开之后是什么样子的。比如,前面的
就是将猫态展开为生猫态和死猫态,它是按照人看上去是死是活来展开的,对于这种展开来讲,反而单个粒子的空间坐标是无关紧要的。
我们前面所说的波函数
注意这里相较于前面在1.2那一篇文章提到的平面波函数,指数上的E*t项被合并到了前面的系数处。我们知道,动量的可取值也是连续且无穷的,正如坐标一样。因此,严格的写法应该是一个积分:
这里省略了一点推导过程和积分运算,我只是想在这里说明一下一般情况下波函数展开是一个什么操作,主要的展开方法和过程后面会简单提及。
细心的你可能注意到上面的式子
这次的内容里面加了一点点自己的理解,提醒一下,作者我本身学历不高,尝试用简单的话来说明一些问题的同时也可能会存在一些漏洞。而且我主要讲述的点是上课的时候没有领悟到的点,不一定适合所有人,也不一定是所谓的重点,或者难点,反而可能需要理解的内容偏多。(把好多个地方推到后面去讲,绝对不是我偷懒!是真的可以到后面继续深入了解!)