量子叠加态系数_量子力学学习笔记1

本文介绍了量子力学的基本概念,包括量子叠加态、波函数和算符。通过解析波函数的性质,阐述了量子系统中物理量的概率性质以及叠加原理。文章探讨了态矢的概念,强调测量对量子态的影响,并以波函数的数学形式展示量子力学中的描述方式。
摘要由CSDN通过智能技术生成

参考书目:朗读《量子力学非相对论理论》 《费曼物理学讲义》

(其实只是复制粘贴自己写的(或抄书的)东西玩玩,顺便试试知乎的公式编译器怎么用~~ps文中可能有些错误,请小心)

19.3.11更新 回头看了看,发现基本就是在抄书。。。还有部分内容有点老旧?(算是知识还没被自己内化、理解还很拿衣服时候的产物吧)没什么必要看。(逃)

  1. 基础概念

对黑体辐射、光电效应的研究让我们得出光具有粒子性的结论,一个光子的能量、动量由

决定,其中
为频率,k为波数,满足
为普朗克常数,
。我们将此结论推广到其他粒子上,认为粒子都具有波粒二象性,可以用“物质波”描述,且有德布罗意关系:

对电子、中子、质子、原子乃至分子的研究表明它们确实有波动性且满足该关系。量子力学对“物质波”的解释是一种“概率波”。

经典力学到波动力学:

在经典力学中,空间里质点的作用量

的面随时间传播,而由德布罗意关系
,发现
,故可以猜想“物质波”的形式类似于
,称之为准经典波函数。

基本假设:一个系统的状态可用波函数

完全描述。

测量:一般用所谓“经典客体”---“仪器”---与量子客体的相互作用来描述量子客体。其他系统与量子系统的相互作用,可被理解为“测量”。

物理量:若在测量中,可肯定地得到状态的某些定量标志,则这些定量标志称为“物理量”。总认为物理量是实数。

完全集合:若一组物理量可以同时测得,且它们同时取定值时再无其他物理量可为定值,则称这组物理量为一个完全集合。

完全描述:对物理量的一个完全集合同时测量的结果产生的态,是被完全描述的态,与完全测量前的历史无关。

叠加原理:设

、...为在测量中分别能产生确定的结果的态的波函数。若
(它被称为叠加态),则对波函数
的测量既可能得出对
的测量结果,也可能得出对
等等的测量结果。一旦测量,则态的结果被唯一确定为其中一个,态不再是叠加态。

必须知道的是,量子力学中往往要使用概率进行描述,一些物理量如位置、动量没有精确值,而且在某一些物理量有准确值时,其他一些物理量是不确定的。

2.态矢

对一个任意的波函数

,把它对应的态记为
,称为态矢(人为规定箭头向右,为右矢;向左的为左矢)。若对
的测量结果总为
互不相同且有确定的测量结果
中的某一个,则由叠加原理,认为
(此处先假设
有可数个),而测量的结果为某一个
的概率应由其系数
决定。考虑到概率为非负的,总和为1,并应当与相应系数的模正相关,不妨揣想P(测量的结果是
)=
,且
。记
规定符号
表示
经测量后得到
的“振幅”,常为复数,其模平方等于
经测量后得到
的概率。在这种记号下,有

测量往往会导致观测后量子态变得确定,其之前的态则往往不复存在。

注意到各个

对应的态
各不相同,且可以在测量中完全分辨开来,一个态一旦被确定为其中之一就不再可能是另外的态,从而有重要关系

是正交归一的。
构成的空间的一组标准正交基。

对于前面的式子,我们可以略去

,简记为

这意味着

可以理解为对
观测,得出其结果与观测
有相同结果的“振幅”。
实际上可以看作是
通过变成态
再成为
的振幅,其总和为
显然是合理的。

的意义知它为双线性的。考虑到
(
的测量结果必为某个
),而
,故
。又因记号的双线性,以及态的展开,可得

可简记为

对于k不是分立的整数,而是连续的实数的情形,

平方被理解为
经测量后得到
的概率密度,有

前面的结论易推广到这种情形。

态矢的行为和矢量有许多相似。

构成一个线性空间,
类似于矢量内积,将
分解为
的线性组合类似于将矢量分解其标准正交基的线性组合。实际上,我们将看到态矢构成了一个希尔伯特空间。

算符、矩阵

将态

通过一个“过程”A达到态
的“振幅”记为
。则
,记

为算符(不同于后面使用的算符,因其作用对象不同),是一个线性变换。
被称为
的矩阵,记为
。有
,为厄米特矩阵。它表示j态在过程A(看作是测量)中表现如同i态的概率“振幅”。若
对应于某个物理量A,我们记
,称为A的平均值,记为
,原因见后。对于基

3.波函数

考虑

(其中q为广义空间坐标,表示位置为
的态),这表示处于态
的粒子在空间范围(q,q+dq)被发现的概率密度的“振幅”,且有
,等于“观测”中得到粒子的位置为q的概率密度。该式在全空间上的积分等于1。实际上
正是以位置为表象的波函数
。q可以被动量p、能量E等等替代。一般的,对物理量f,有f表象下的波函数
,其模平方为“观测”得到该物理量为f的概率或概率密度。

下面用波函数的方法描述粒子的态。为了方便,不妨选用

。它满足
,积分范围是全空间。
这并不恒成立,对连续谱,一般无法这样归一化

首先,应当明确的是,一个态在空间不同处给出的f一般是不同的,不同一次的测量得到的f也往往不同,我们重视的是其平均值

。若仅讨论一个物理量f,并假设对每一个
,即
都是确定且不同的,简记为
。对于
,对f观测结果为某个
的概率正为观测结果为对应的
的概率
(可以认为
是f表象下的波函数),对
的f观测结果的平均值
。在这里f取分立的值,因k为分立的整数,此时称f有
离散谱;对于f取连续值的情形,k也必须连续,称f有 连续谱。连续谱的情形下,上式应写作
为f在
取值的概率密度。

上面已指出

是f表象下的波函数,为
。由k与f的对应关系,不妨将指标都改为f。使用前面对算符的定义,有

确实为f的平均值。

上面的算符作用的对象是态矢,现在寻找与其对应的作用于波函数的线性算符

。由于
,我们自然希望
。如定义算符
还满足

(积分范围是全空间)则

。这是合理的。如果将
代入,得
,与前面对矩阵的定义比较,不难发现

正是矩阵。特别的,

。对连续谱也有相应的结论。

最终结论:知乎的公式编译是个shi啊啊啊喷血

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值