rpy2: 在 python 中调用 R 函数的一个实例
python 与 R 是当前数据科学计算的两大支柱, 就我个人的使用经验而言, R 更直观, 简单和上手一些. 很多专业的统计分析 Python 并没有提供 R 中的对应体, 而你想要使用 Python 做数据分析, 这时候就需要使用 rpy2 包来构建这个桥梁了.
比如我最近遇到一个分析问题, Python 无法计算非参数统计检验 wilcoxon test 的置信区间, 如果你仔细查看 Python 提供的非参数检验, 你会发现它使用的是正态逼近, 这在样本量大的时候 (根据中心极限定理服从正态分布) 当然可以使用 Python 计算, 当如果你是小样本, 比如大多数生物医学数据处理与分析中普遍样本少的可怜. 在 Stack overflow 上有人讨论过并检查统计检验的 p 值, 结论是算检验, R 更靠谱些, 优先采用.
言归正传, 在银行统计工作室 rpy2 使用示例 http://www.cnblogs.com/cloudtj/articles/6372200.html 一文中对 rpy2 包各方面的使用都有介绍, 加 rpy2 官方文档 http://rpy2.readthedocs.io/en/version_2.8.x/ 基本上可以掌握 rpy2 的使用, 这里我提供这两天实现的一个实例 -- 从 python 中调用 R 的 wilcox.test 函数进行非参数检验, 如果大家有这方面需求可以作为一个参考.
代码已经封装为一个函数, 略写了一下文档.# 推荐使用 conda 管理环境
# conda create --name test python=3.6
# source activate test
# conda install rpy2 # should add conda-forge channel
# reference link: ,
defpyWilcox(x,y=None,alternative='two.sided',mu=0,paired=False,exact=None,correct=True,conf_interval=True,conf_level=0.95):
'''Run wilcoxon test using wilcox.test in R stats package, default is'two sided' test.returnpvalue,statisticalvalueandconfidence intervalina dictory.
Arguments:
x
numeric vector of data values. Non-finite (e.g., infinite or missing) values will be omitted.
y
an optional numeric vector of data values: as with x non-finite values will be omitted.
alternative
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
mu
a number specifying an optional parameter used to form the null hypothesis. See 'Details'.
paired
a logical indicating whether you want a paired test.
exact
a logical indicating whether an exact p-value should be computed.
correct
a logical indicating whether to apply continuity correction in the normal approximation for the p-value.
conf_interval
a logical indicating whether a confidence interval should be computed.
conf_level
confidence level of the interval.Example:
x=[iforiinrange(0,10)]
y=[iforiinrange(10,20)]
# two sample test
pyWilcox(x,y)
# one sample test
pyWilcox(x)
# output:
#
# {'p_value': [1.082508822446903e-05], 'statistic': [0.0], 'conf_interval': [-13.0, -7.0]}
# {'p_value': [0.009151688852650072], 'statistic': [45.0], 'conf_interval': [2.500027475911944, 7.499972524088056]}
Note:
More information please run help('wilcox.test.default') in R console'''
# 载入 r 对象
from rpy2 import robjects
# 载入导入包函数
from rpy2.robjects.packages import importr
# 将 stats 包导入为模块
stats = importr('stats')
# When one wants to create a vector from Python, either the class Vector or the convenience classes IntVector, FloatVector, BoolVector, StrVector can be used.
# 将列表 x 转换为 r 可识别数据对象
x = robjects.FloatVector(x)
# 将参数中的. 替换为_, 解决不兼容问题, 来自 rpy2 文档函数部分
def iamfeelinglucky(func):
def f(*args, **kwargs):
d = {}
for k, v in kwargs.items():
d[k.replace('_', '.')] = v
return func(**d)
return f
# 矫正参数名
wilcox = iamfeelinglucky(stats.wilcox_test_default)
# None 类型似乎没有相应的函数, 只能用条件语句进行判断
if y != None:
y = robjects.FloatVector(y)
if exact != None:
pr = wilcox(x = x, y = y, alternative = alternative, mu = mu, paired = paired, exact = exact, correct = correct, conf_int = conf_interval, conf_level = conf_level)
else:
pr = wilcox(x = x, y = y, alternative = alternative, mu = mu, paired = paired, conf_int = conf_interval, conf_level = conf_level)else:
ifexact!=None:
pr = wilcox(x = x, alternative = alternative, mu = mu, exact = exact, correct = correct, conf_int = conf_interval, conf_level = conf_level)else:
pr=wilcox(x=x,alternative=alternative,mu=mu,correct=correct,conf_int=conf_interval,conf_level=conf_level)
print(pr)
res=list(pr)
# 返回结果中需要的值构建字典
res={"p_value":list(res[2]),"statistic":list(res[0]),"conf_interval":list(res[7])}
return(res)
来源: http://www.jianshu.com/p/c18e8d8dab88