SAT 问题算法设计与实现问题算法设计与实现
问题算法设计与实现问题算法设计与实现
【摘要】本文介绍了SAT问题及其完全性算法与不完全性算法,并对各种求解算法进行比较,从中
选择了几个比较具有代表性的算法,如分治算法、回溯算法、贪心算法、局部搜索算法、启发搜索
算法和模拟退火算法。在设计和实现这些算法的同时,结合参考文献的思维模式提出了自己的代码
优化方案,比如求解贪心算法最大效益值的一步扫描策略等。最后,采用国际标准SATLIB中的随机
3-SAT测试数据集,运行和分析算法实现的主要特点与不足。
一、基本定义
(一)可满足性问题
由命题逻辑的常识知道,任何命题逻辑公式都逻辑等价于一个合取范式(CNF) 。可
满足性(SAT) 问题是判定一个给定的CNF 形式的命题逻辑公式是否存在可满足的赋值的
问题,是计算机科学理论与应用的一个核心问题。研究解决SAT 问题的有效算法不仅具
有重大的理论意义,而且在智能规划、智能决策、定理证明、电路诊断和优化计算等诸
①
多领域有着实际的意义。下面给出一些基本定义 。
定义定义1 赋值:赋值:关于V 的赋值是一个函数Φ:V→{0,1}。如果Φ(V)=1,则称V 在赋
定义定义 赋值赋值::
值Φ下取真值;如果Φ(V)=0,则称V 在赋值Φ下取假值。
定义定义2 文字:文字:对任意一个命题变量x ,称符号x 和¬x 是V 上的文字,其中x 是正文
定义定义 文字文字::