spss多元线性回归散点图_SPSS应用:多重线性回归详解

在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。线性回归分析则是基于最小二乘法原理产生的最优线性无偏估计方法,可以研究一个因变量与一个或多个自变量之间是否存在某种线性关系,按照因变量的多少可以分为简单线性回归和多重线性回归。 模型简介: ȳ=a+b1*X1 +b2*X2+b3*X3+...+bn*Xn,y=ȳ+ε ȳ是y的估计值或者预测值,表示某个条件下的y的估计值;a表示直线在Y轴上的截距,也称为常量或者常数项;bn是直线的斜率,也称为偏回归系数,表示当Xn改变一个单位时,所预测的y的平均变化量;ε为误差项。 在研究分析中,多重线性回归分析可以得出某个因变量与其他自变量之间的关系模型,探究哪些自变量与因变量产生线性相关,以及自变量对因变量的解释程度等。常用的多重线性回归分析步骤如下: 一、确定自变量和因变量 本次分析以“中华护理杂志2018年3期”的关于护士触摸舒适感的现状调查及其影响因素为例,以护士触摸舒适感为因变量,年龄(岁)、科室、情绪衰竭、去人格化、个人成就感5个影响因素为自变量,共计100条数据; f685b1bebe6020b34e9e3520faefae77.png 二、判断是否存在异常值
已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页