SPSS中回归分析功能在【分析】--【回归】--【线性】中进行线性回归分析。对于一元线性回归,可通过【图形】--【旧对话框】--【散点图】绘制因变量y和自变量x的散点图。
通过样本数据建立回归方程后不能立即用于对实际问题的分析和预测,需进行各种统计经验,主要包括:
- (1)回归方程的拟合优度检验(r检验);
- (2)回归方程的显著性检验(F检验);
- (3)回归系数的显著性检验(t检验);
(4)残差分析,即分析残差是否满足“正态、独立、等方差(无异常值)”的前提。在SPSS中,在【分析】--【回归】--【线性】--【绘图】框中,可通过绘制残差的散点图、频率直方图以及正态概率图(P-P图)来完成残差分析。
多元回归分析中变量的筛选问题。一般有向前筛选、向后筛选、逐步筛选三种基本策略。逐步筛选是目前使用较多的一种方法。变量的筛选在【分析】--【回归】--【线性】--【方法】框中选择一种策略来完成回归分析。
残差的独立性检验:DW检验(Durbin-Watson):
- DW=4:序列完全负自相关
- 2<DW<4:序列存在负自相关
- DW=2:序列无自相关
- 0<DW<2:序列存在正自相关
- DW=0:序列完全正自相关
变量的多重共线性测度。一般有以下方式:
- (1)容忍度。取值∈(0,1),越接近0表示多重共线性越强;越接近1表示多重共线性越弱。
- (2)方差膨胀因子(VIF)。VIF≥1。多重共线性越弱,VIF越接近1;多重共线性越强,VIF越大。通常,如果VIF≥10,说明解释变量间有严重的多重共线性。
- (3)特征根和方差比。如果特征根中,最大特征根的值远远大于其他特征根的值(0.7以上),说明变量间有很强的多重共线性。如果某个特征根可以同时刻画多个解释变量方差的较大部分比例,说明这些解释变量间有较强的多重共线性。
- (4)条件指数。条件指数∈[0,10),多重共线性较弱;条件指数∈[10,100),多重共线性较强;条件指数≥100时,存在严重多重共线性。
接下来我们运用SPSS来进行实战回归分析!
利用文件高校科研研究.sav,因变量为“论文数”,分析其它变量与因变量的