er图转换成关系模型的例题_模型 | 一文搞定初中数学9大重要几何模型(优选)...

本文详细介绍了如何将ER图转换成关系模型,并通过一系列初中数学模型,包括平行四边形、反比例函数、相似三角形等,深入探讨几何问题的解决方法。文章涵盖多个几何模型的必考知识点梳理,如半角模型、弦图模型等,旨在帮助读者全面掌握几何模型的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章来源:王通博初中数学,ID:wtbmaths 近日初中QQ群更新的部分内容如下 几何画板课件2580例+教程 2020年中考数学真题分类汇编版本1(58讲Word) 2020年中考数学真题分类汇编版本2(21讲Word) 2020年中考数学真题分类汇编版本3(43讲Word) 2020年中考数学真题分类汇编版本4(30讲Word) 2020年全国中考数学真题试卷(258份Word)

一文搞定特殊平行四边形17个考点(320页Word)

一文搞定反比例函数问题(162页Word)

一文搞定相似三角形基本模型

 一文搞定相似三角形模型

 一文搞定初中数学网格问题

一文搞定初中数学二次根式涉及的考点与题型

初中数学必会12个几何模型(222页Word)

浙江省2018-2020中考数学分类汇编(17讲Word)

广东省2021年中考数学一轮精讲篇(31讲Word) 广东省2016-2020年中考分类汇编(11讲Word) 江苏省2016-2020中考数学分类汇编(27讲Word) 上海2021年中考数学试题分类汇编(18讲Word) 山东省2018-2020中考数学分类汇编(20讲Word) 福建省2020年中考热点问题梳理(8讲Word) 安徽省2020年中考重难点专题强化(20讲Word) 河南省2020年中考一模分类汇编(13讲Word) 河南省2020年中考二轮冲刺讲义(12讲Word)

圆的基本性质章节涉及的18个必考点全梳理

初中代数式章节必考的20个考点全梳理

三角形初步涉及的20个必考点全梳理

全等三角形章节涉及的16个必考点全梳理

相似三角形章节涉及的18个必考点全梳理

网红“对称问题”涉及的16个必考点全梳理

网红“旋转”问题必考题型梳理

特殊平行四边形涉及的16个必考点全梳理

平面直角坐标系章节12个必考点全梳理

初中勾股定理章节12个必考点附例题变式全梳理

实数章节涉及的20个必考点全梳理

有理数章节涉及的16个必考点全梳理

反比例函数涉及的12个必考点全梳理

整式加减章节涉及的20个必考点全梳理

数的开方章节涉及的12个必考点全梳理

一元二次方程章节涉及的14个必考点全梳理

二次函数章节涉及的14个必考点全梳理

一次函数章节涉及的18个必考点全梳理

2020中考数学微型培优专题课(6份PPT) 2020届中考数学总复习拉分题梳理(8份Word) 备战2021年中考数学专题练(13讲Word) 2020年中考数学冲刺难点突破 图形折叠问题 极致经典:初中最值问题4大类28小类全梳理 重难点突破:初中动点问题7大类20小类全梳理 中考中相似三角形的常见模型及典型例题  三角形中角度计算相关的模型 初中数学图形运动解题技

ba97a92e88f4319d69e71bafa2390aea.png

重要几何模型1--半角模型

模型特点

倍长中线或类中线(与中点有关的线段)构造全等三角形

如图①:

(1)∠2=1/2∠AOB;(2)OA=OB。

如图②:

连接 FB,将△FOB 绕点 O 旋转至△FOA 的位置,连接 F′E、FE,可得△OEF′≌△OEF。

df71249e8129197ba5a2a09280736eb5.png

74ee1a49119eeb1fa70f2dcb8ef341ac.png

典型例题1

如图.在四边形ABCD中,∠B+∠ADC=180°,ABADEF分别是边BCCD延长线上的点,且∠EAF=1/2BAD,求证:EFBEFD

d1926455054d738a2c765f5cd2ab99d7.png

【分析】在BE上截取BG,使BGDF,连接AG.根据SAA证明△ABG≌△ADF得到AGAF,∠BAG=∠DAF,根据∠EAF =1/2BAD,可知∠GAE=∠EAF,可证明△AEG≌△AEFEGEF,那么EFGEBEBGBEDF

【解析】证明:在BE上截取BG,使BGDF,连接AG

0ae96f3be3d4a8ab456a32d3dc3273ee.png

∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,

∴∠B=∠ADF

在△ABG和△ADF中,

易证△ABG≌△ADF(SAS),

∴∠BAG=∠DAFAGAF

∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=1/2BAD

∴∠GAE=∠EAF

在△AEG和△AEF中,

易证△AEG≌△AEF(SAS).

EGEF

EGBEBG

EFBEFD

典型例题2

问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点MN分别在直线ACAB上,且∠MON=60°,猜想CMMNAN三者之间的数量关系.

方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;

e28a0daf4c8c3910bea5dc7611543a59.png

小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;

问题解决:(1)如图1,MN分别在边ACAB上时,探索CMMNAN三者之间的数量关系,并证明;

(2)如图2,M在边AC上,点NBA的延长线上时,请你在图2中补全图形,标出相应字母,探索CMMNAN三者之间的数量关系,并证明.

【分析】(1)在AC上截取CDAN,连接OD,证明△CDO≌△ANO,根据全等三角形的性质得到ODON,∠COD=∠AON,证明△DMO≌△NMO,得到DMMN,结合图形证明结论;

(2)在AC延长线上截取CDAN,连接OD,仿照(1)的方法解答.

【解析】解:(1)CMAN+MN

理由如下:在AC上截取CDAN,连接OD

4a63fa84e9b8c9302098b67b360ab094.png

∵△ABC为等边三角形,∠BAC与∠ACB的角平分线交于点O

∴∠OAC=∠OCA=30°,

OAOC

在△CDO和△ANO中,

易证△CDO≌△ANO(SAS)

ODON,∠COD=∠AON

∵∠MON=60°,

∴∠COD+∠AOM=60°,

∵∠AOC=120°,

∴∠DOM=60°,

在△DMO和△NMO中,

易证△DMO≌△NMO

DMMN

CMCD+DMAN+MN

(2)补全图形如图2所示:

3ea6727a6e16b04ea7b51c17f1ee8212.png

CMMNAN

理由如下:在AC延长线上截取CDAN,连接OD

在△CDO和△ANO中,

易证CDO≌△ANO(SAS)

ODON,∠COD=∠AON

∴∠DOM=∠NOM

在△DMO和△NMO中,

易证DMO≌△NMO(SAS)

MNDM

CMDMCDMNAN

典型例题3

如图,在正方形ABCD中,MN分别是射线CB和射线DC上的动点,且始终∠MAN=45°.

(1)如图1,当点MN分别在线段BCDC上时,请直接写出线段BMMNDN之间的数量关系;

(2)如图2,当点MN分别在CBDC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;

(3)如图3,当点MN分别在CBDC的延长线上时,若CNCD=6,设BDAM的延长线交于点P,交ANQ,直接写出AQAP的长.

d46a3dac82513b6e83a01ba12b4369a4.png

分析

c115969cfbac4bf890f0d9a3e0bbf41b.pngdd5be4e4e218be989664f58856be3973.png

f616d330122c9cb07ad0a1aa1635ff10.png

典型例题4-5

已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CBDC(或它们的延长线)于点MNAHMN于点H

(1)如图①,当∠MAN绕点A旋转到BMDN时,请你直接写出AHAB的数量关系:AHAB

(2)如图②,当∠MAN绕点A旋转到BMDN时,(1)中发现的AHAB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;

(3)如图③,已知∠MAN=45°,AHMN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)

50ac10e54beac2de2b6c90cca5788c8b.png

【分析】(1)由三角形全等可以证明AHAB

(2)延长CBE,使BEDN,证明△AEM≌△ANM,能得到AHAB

(3)分别沿AMAN翻折△AMH和△ANH,得到△ABM和△AND,然后分别延长BMDN交于点C,得正方形ABCE,设AHx,则MCx﹣2,NCx﹣3,在Rt△MCN中,由勾股定理,解得x

e8d92a5ca8b937b4b5b32e4f513c2097.pnge7e0fd533a2de72ac838dccae5f3be70.png

典型例题6

(1)如图1,将∠EAF绕着正方形ABCD的顶点A顺时针旋转,∠EAF的两边交BCE,交CDF,连接EF.若∠EAF=45°,BEDF的长度是方程x2﹣5x+6=0的两根,请直接写出EF的长;

(2)如图2,将∠EAF绕着四边形ABCD的顶点A顺时针旋转,∠EAF的两边交CB的延长线于E,交DC的延长线于F,连接EF.若ABAD,∠ABC与∠ADC互补,∠EAFBAD,请直接写出EFDFBE之间的数量关系,并证明你的结论;

(3)在(2)的前提下,若BC=4,DC=7,CF=2,求△CEF的周长.

EF的长为:5;

②数量关系:EFDFBE

97d5c2102ab65497771dd9d7ac4ea5bc.png

【分析】(1)先证明△ABE≌△ADM,再证明△AEF≌△AMF,得到EFDF+BE即可;

(2)先证明△ADM≌△ABE,再证明△EAF≌△MAF,即可;

(3)直接计算△CEF的周长EF+BE+BC+CFDF+BC+CF=9+4+2=15.

3b657f7ba13f79a56c9a5510bd858f23.png

9975a2e5748c428ca4870f197486a4cf.png

(3)由上面的结论知:DFEF+BE

BC=4,DC=7,CF=2,

DFCD+CF=9

∴△CEF的周长EF+BE+BC+CFDF+BC+CF=9+4+2=15.

即△CEF的周长为15.

EFDFBEFC+CDBE=5

②和(2)方法一样,EFDFBE

故答案为EFDFBE

06e6e6992348536783f11cd9f9d75f01.png

重要几何模型2--将军饮马模型

69a85a60c0436afd1a42c919fd414215.png

0c6f43943c665d6c6e384455574293fb.png

24adabeeb65780ef9b68d9e71bd53d54.png

97d1a33c8e9836bd798df7e6df0afd53.png

b2ec60d04504807a1a4d360eb2564239.png

291ef20a5c6d1d8245a0b2a11282c78f.png

6f7551160c673f62f553a739b04c6c2e.png

22079ecf729dc78097ac6874fdc4cf5c.png

849a194bd24fc46a0f1963e57757c90c.png

e68c9672456dc15dbfe8c7cb682623a1.png

fd1dafc7c0810407ee8f301820e1a335.png

46c2523b30de1892d05cfa2f209b629c.png

3e75920ef45d303f9c2aa2eb648d2ad3.png

642c49723ffa5abbed8c1658192c3f7e.png

f1d0814c31d85732bab57e74bf9d8d8a.png

ce4267c98effdb57b39eb4918845d858.png

31d6f857cefb137c78b240e68bed7086.png

1d0e8e9a310b3a87c876617ccc6d87b9.png

b6d8a879910a20d72c613485c24d9ab0.png

14d2a1bbff97f44ae4bad2314b0a6c69.png

ae56570b13864b738ae4d88d7b6a9527.png

8b44120a713bbf2882c5eab528eaf40b.png

14124c9be218db5db746aa4658d2528e.png

32fb6276df15337146637809f9e66fff.png

6f92e0b9d71acb7e6c3e1b1b73758e4d.png

dfeb891b437114c25491e2347cbb3773.png

25f2dd2ba877e28e23f5661bcf8ef2ed.png

f04a2ea4cc07241379273684d8953a18.png

07f3b43cc50de493b3a88cf00e70f824.png

05491f19a11989b4f746e4ec446d9ce5.png

6952233959e965072efdf784933158a6.png

c93d936709019e4a507170388a8b04c0.png

6940d26aade6c569c3c69e6b648d88c6.png

b24270244bcb85153d25b866af92739a.png

c5c0dd69c4c3ae0bfc0c11b5d375e95a.png

13616b7db11aa6332fc36d612f9da84f.png

489a1a0af19a91b567e2022131c8e7c8.png

7e681404db24ae0690349efdb14682d2.png

88366c6e0a1cce90165fa97c9810389f.png

62e29115b601b0fdc824e23e736defc1.png

ccf99fae758f576f8739a32312c732f1.png

c4e070810278ea986b3b0436bc287e81.png

69f40d32b5f404c325add1770302b972.png

fb912223b5a3ea83a40acef3b119ffa6.png

96708e7ccd017795179516087466206c.png

b8c59505c6fa9450d9a5b2d849cda913.png

4d48535811ac34e8b66648e2e809bfba.png

83d2d7c3765c036a73e1f5c6828d885b.png

37141f862c171149d259d6b6fb9531ec.png

ffde3498c795b9e33d6276a7c86eb124.png

1e922f61acf4c583b618ddb1d456bfe1.png

重要几何模型3--弦图模型

模型特点

弦图模型,包含两种模型:内弦图模型和外弦图模型.

(一)内弦图模型:如图,在正方形ABCD中,AE⊥BF于点E,BF⊥CG于点F,CG⊥DH于点G,DH⊥AE于点H,则有结论:△ABE≌△BCF≌△CDG≌△DAH.

da34fc2931056e36bc90631d16f629e7.png

外弦图模型:如图,在正方形ABCD中,E,F,G,H分别是正方形ABCD各边上的点,且四边形EFGH是正方形,则有结论:△AHE≌△BEF≌△CFG≌△DGH.

99728a748d8f4e2a011624e4417be43f.png

弦图模型典例讲解

例题1. 如图,在△ABC中,∠ABC=90°,分别以AB,AC向外作正方形ABDE,ACFG,连接EG,若AB=12,BC=16,求△AEG的面积.

b5d371cd3fdb1bacbcd0f8480aa3112b.png

c13c722d7fb1ba43bdfba04c5efb1978.png

变式练习>>>

1.如图,四边形ABCD是边长为4的正方形,点E在边AD上,连接CE,以CE为边作正方形CEFG,点D,F在直线CE的同侧,连接BF,若AE=1,求BF的长.

46b8ec10ec45245262be071b0de6bcb6.png

ca40fcbc464927d89b37ae54139b4e73.png

例题2. 如图,以Rt△ABC的斜边BC在△ABC同侧作正方形BCEF,该正方形的中心为点O,连接AO.若AB=4,AO=6倍根号2,求AC的长.

ce29fe870f8a676934b587dcfd5c1bba.png

26424fea73e135ff8f195550d8d3256a.png

变式练习>>>

2.如图,点A,B,C,D,E都在同一条直线上,四边形X,Y,Z都是正方形,若该图形总面积是m,正方形Y的面积是n,则图中阴影部分的面积是___________.

698a9296794e932fccd7acf8c9b3b1fa.png

49591f6c8c5e21efd2984a010ceda835.png

例题3. 如图,在△ABC中,∠BAC=45°,D为△ABC外一点,满足∠CBD=90°,BC=BD,若三角形ADC面积为4.5,求AC的长.

3dbc18ec45925f3ad34e7ef20bb64c92.png

70aca4199c6c7d499eba408f624a07a7.png

变式练习>>>

3.点P是正方形ABCD外一点,PB=10cm,△APB的面积是60cm2,△CPB的面积是30cm2.求正方形ABCD的面积.

86177db425569cca1582ec9d8889d4a5.png

681ec524f26b7eada86555f568fe9e89.png

例题4. 在边长为10的正方形ABCD中,内接有6个大小相同的正方形,P、Q、M、N是落在大正方形边上的小正方形的顶点,如图所示,求这六个小正方形的面积.

ef7c1e2efe69c8201fff0e0f8a8233b8.png

3bba904cdf21927bb1863286274c2fdb.png

c5ad9d1166ce8cbff1f401cfae878b95.png

例题5. 如图,在等腰Rt△ACB和等腰Rt△DCE中,∠AXB=∠DCE=90°,连接AD,BE,点I在AD上,

(1)若IC⊥BE,求证:I为AD中点;

(2)若I为AD中点,求证:IC⊥BE

c29413a801a407e3fe79eea1c13c6db5.png

89465e23437ced96d64e3777520ea418.png

例题6. 在平面直角坐标系中,直线l的解析式为y=2x+b,其与x轴交于点A,与y轴交于点B,在直线l移动的过程中,直线y=4上是否存在点P,使得△PAB是等腰直角三角形,若存在,请求出满足条件的所有点P的坐标,如不存在,请说明理由.

b6d3a1beb6367a27e641bf3cf1eb39bc.png

弦图模型小试牛刀

1.我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AHCF于点PQ.在正方形EFGHEHFG两边上分别取点MN,且MN经过点O,若MH=3MEBD=2MN=4根号5.则△APD的面积为多少.

b42bdb6d805e700f333ee244b6de117b.png

2adfe9e6bc73c79f6f41db590edcb0dc.png

2.如图,在△ABC中,∠ACB=90°,分别以边ABAC向外作正方形ABDE和正方形ACFG,连接CEBGEG.(正方形的各边都相等,各角均为90°)

(1)判断CEBG的关系,并说明理由;

(2)若BC=3,AB=5,则AEG面积等于多少.

ac1ce2388437d47498e507106bb2e80c.png

812cc0d77947578e392b53281daa27c2.png

c05ab116aafd5274f4324eb623b39835.png

重要几何模型4--费马点模型

模型特点

费马点的定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:

1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;

2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

费马点的性质:费马点有如下主要性质:

1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

费马点最小值快速求解:

费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.

秘诀:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值

5d5b459197d2766151b04dbd1e91b03b.png

费马点最值模型典例讲解

例题1. 已知:△ABC是锐角三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°.

求证:GA+GB+GC的值最小.

8970bc7c7ef9c9775249fcaf064e0cb9.png

变式练习>>>

1.如图,点P是三角形边长为1的等边内的任意一点,求PA+PB+PC的取值范围.

82a4dddf924d0ace28a5a39c5f45265b.png

d040b3c90b35efc8ca68da82f0d4635d.png

fc180864032ca2c522c2cd55bae8fc44.png注    本题旋转△AEB、△BEC也都可以,但都必须绕着定点旋转,读者不妨一试.

变式练习>>>

2.若P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4, 求PB的值.

8e01d939e684fa32a3493d16310ba2d5.png

例题3. 如图,矩形ABCD是一个长为1000米,宽为600米的货场,AD是入口,现拟在货场内建一个收费站P,在铁路线BC段上建一个发货站台H,设铺设公路APDP以及PH之长度和为l,求l的最小值.

25f95b3acd957382ee29a18b37b12a45.png

7336b18c02143fa3c40e6faef9470e0f.png

变式练习>>>

3.如图,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点AD为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含BC两点)开一个货物入口M,并修建三条专用车道PAPDPM.若修建每米专用车道的费用为10000元,当MP建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留整数)

dafe19425cf4cc3294d3554a090cd68b.png

5e13e4324519e0679e0903e7521d10e7.png

例题4. 如图1,已知一次函数yx+3的图象与x轴、y轴分别交于AB两点,抛物线y=﹣x2+bx+cA

B两点,且与x轴交于另一点C

(1)求bc的值;

(2)如图1,点DAC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;

(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PAPCPG,分别以APAG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR

①求证:PGRQ

②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.

36dbe99693a6dec1d7158ae5bbfd270e.png

72fadc10ef9fffd9027aad26458ba2c1.png

费马点最值模型小试牛刀

3772209823dea838acbe93b5b8c69d17.png

433e16fd842d42c9a914060148621d2d.png

7e4b21271efdcb2a4b3b8bde7103ca91.png

586240d9861e86c991959c5b9e13c8cd.png

88a95a02f6cc45b330d0d4c57011fa18.png

c096ab96e943f213a5e145e17fbbcc24.png

重要几何模型5--隐圆模型

模型特点

1.触发隐圆模型的类型

(1)动点定长模型

0608a4d788181328c3f3c2eab4a1049f.png

(2)直角圆周角模型

0b14f468af88f58c2b2543a403e545ef.png

(3)定弦定角模型

cda9ef4878e16472078c1407cf89552e.png

(4)四点共圆模型①

013e64c30b51407672ca88d9bbae615b.png

(5)四点共圆模型②

ec70121ae1b6db779b68972e736113c9.png

2.圆中旋转最值问题

a543e463b81502a6f7e14a8e3ec4a294.png

隐圆模型例题讲解

例题1. 如图,在边长为2的菱形ABCD中,∠A=60°,MAD边的中点,NAB边上的一动点,将△AMN沿MN所在直线翻折得到△A`MN,连接A`C,则A`C长度的最小值是__________.

6d7426a8f56322291b8c0b7d49a465f5.png

【分析】考虑△AMN沿MN所在直线翻折得到△AMN,可得MA’=MA=1,所以A’轨迹是以M点为圆心,MA为半径的圆弧.连接CM,与圆的交点即为所求的A’,此时AC的值最小.构造直角△MHC,勾股定理求CM,再减去AM即可,答案为根号7减去1

fb928809e879cbc59d37b47943d5b1c3.png

变式练习>>>

如图,在直角三形ABC中,

C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是__________.

b3f183a91c208cf7a9b2a1f56b5b87d8.png

【分析】考虑到将△FCE沿EF翻折得到△FPE,可得P点轨迹是以F点为圆心,FC为半径的圆弧.过F点作FHAB,与圆的交点即为所求P点,此时点PAB的距离最小.由相似先求FH,再减去FP,即可得到PH.答案为1.2.

ca26ae0f9583af5051e86c2c219b04ea.png

例题2. 如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点AB,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为________.

664415c0c22655e2fda7343b4acc4112.png

efc8d0f13e949bf2c311a214c7c60ee6.png

变式练习>>>

2.如图,矩形ABCD

中,AB=4,BC=8,PQ分别是直线BCAB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PFPD,则PF+PD的最小值是_________.

ce615c7d58190a39ecd43bae18d6476d.png

6bcb90215205848e210ad58f91fb937b.png

例题3. 如图,EF是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CFBD于点G,连接BEAG于点H,若正方形边长为2,则线段DH长度的最小值是________. 

cf53d65af71a39c4a44deb024b48be54.png

ffa3674761c541ff6eb1fe9c6fb0a75a.png

变式练习>>>

3.如图,Rt△ABC

中,ABBCAB=8,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值是_________.

cd3a4ce635e76196ff8bf8c0ca499be4.png

2d48df08cf296af1048b1bac9caed090.png

隐圆模型小试牛刀

cd089d4438e6dc8843cf39a123132aec.png

275685ab0df0d92d0c6997d9a4891fb7.png

29c3b297fee30899d8b069023e9596d9.png

bd3bd824bd7829e7421bd8027a902e93.png

18685447b1d809ac6b33cc79eec7c850.png

重要几何模型6--胡不归模型

模型特点

在前面的最值问题中往往都是求某个线段最值或者形如PA+PB最值,除此之外我们还可能会遇上形如PA+kP这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆.

【故事介绍】

从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)

而如果先沿着驿道AC先走一段,再走砂石地,会不会更早些到家?

2c4abc4f3c98f9fa608a8fa981070f70.png

【模型建立】

如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,AB为定点,点C在直线MN上,确定点C的位置使

的值最小.

f41fa6bda614799eef6f27b0e6a48f1b.png

【问题分析】

6181a2e62f338f6a701fe9e19ea0d84c.png

【问题解决】

构造射线AD使得sinDAN=kCH/AC=KCH=kAC

360ac4ff485ca7378e8ed9884982e713.png

将问题转化为求BC+CH最小值,过B点作BHADMN于点C,交ADH点,此时BC+CH取到最小值,即BC+kAC最小.

f4b831c3824bdf3fe6bb173309aa67bf.png

【模型总结】

在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.

胡不归最值模型例题讲解

b8d36c59695e62afb7caef98e69e6b5c.png

a51ea6db0ea521d1a9f0260fa7e40a0b.png

a52e078da1d6c9fd7f0749374b03f3d0.png

364036af224d398108affa19b9b1fc77.png

e8e72be728b3258f3428ecef1f616518.png

ae6f5842100d6e754e5d14b197829167.png

c309a09218691e649aeba42f21fa3a11.png

0d24f6cca5f3d35e1a2b07e2e95580b4.png

85861addeaa3ca6e108dc13f2548f6e3.png

胡不归最值模型小试牛刀

a13cc888935fa63379909973ecdd6e89.png

526c7055e91ff1aa1962260eb69a782d.png

39e5b16b1474cb875052b6023db205c0.png

d50d3f456aa14de3437f9eea7b936419.png

4e9932722de3eca0968c173174e5118c.png

e0dc9d257809d3cbf296396bc327df7a.png

dc539eaf8544b29d27def390c4d8ca19.png

4285c2994ada8b210d1c3182279ab2ae.png

重要几何模型7--阿氏圆模型

模型特点

在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.

【模型来源】

“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.

49778d524f085e850a3b7fb7c3ec911c.png

20995a2aff6cff248dde07db8d6d54e7.png

10106139360e7aca51a38dc6e9e9cb7f.png

213ab00fcbdf95c81abd6e63cce61977.png

阿氏圆最值模型例题讲解

19011fa9680ea82278c4b0dd0cd8aade.png

713ddfa46862e396b2fea0e46f5c6957.png

2ffd55323a9c3a747c837ed3663f1d85.png

48ec740197bbcdc76b92f1c7cbc91fc6.png

478e34b91bbd2b32d4118f235e91b980.png

a0684d8747ec5611ffdba92bba390e50.png

624c8fc63047505af85664152310f4ed.png

e0e13a9f68e73b23d5af665c04eb4838.png

589924cc505ea6794427f2a7e83ece00.png

0edfbcc7171180bc757b0b1a15f6035c.png

阿氏圆最值模型小试牛刀

40813fc7017ae51ab6989a7d0d6bf097.png

4b5645969e4187acc6e44430f65be05e.png

f2adb89c55cce1aacd426aa6ec9f6a89.png

81888b2170426d5f79cb8917bd1b56aa.png

9804edcbad01e9911bb51af42c1df535.png

重要几何模型8--角含半角模型

模型特点

角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。

类型一:等腰直角三角形角含半角模型

1913ba4ce20af370f06a8ffe7599b632.png

类型二:正方形中角含半角模型

4c47920704453dfa45e81089e118ef4f.png

角含半角模型例题讲解

13c9c8acddd783329c71bfd9725d7f0c.png

c04df1c96b12b2351271cea922df9419.png

4430b3abf5b43ccacb3dd1314ad51521.png

07ebac1b575736dad5e40e05840dfa0a.png

b09531ab60f92e1dce4c138cf959ef41.png

5c79fa7efffc14c52d40e469b5cd2b46.png

badaf9af59b4586fbe0cb7f1fcea8fe6.png

角含半角模型小试牛刀

a10798e2482134af1e10eafb75d1bedc.png

225f5c4b02ccc5a3663a6c46bde8f025.png

4b49e28018e8666f4a7f852c7d41cddf.png

d5582a80c6a22525548ec4c2bedb79bc.png

865493d01e36edd834fc39dae91cc35f.png

a7ec579be71aef1cd174e03b39f7c127.png

67890002dc1d98a05bc2387bffcac2f1.png

500b7d756531d3d984e5c1dfa71b79e2.png

重要几何模型9--共顶点手拉手模型

模型特点

共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。寻找共顶点旋转模型的步骤如下:

(1)寻找公共的顶点

(2)列出两组相等的边或者对应成比例的边

(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。

415842df5aefc5940fb57afa878421f5.png

bd13666adc6adfca0238aeaf8c723efe.png

共顶点手拉手模型例题讲解

a934a3a89288ff2bfcbde62fedd70e24.png

df8be8a5b7ea694c80f7222b76a09549.png

d21e898d4bd3b20332e341ba4a526b86.png

9fc89aa028979aa05de57d23f854a72b.png

1d732d276c9e8dc17834071d744a2428.png

a17c95b9ceed2bb4fc0bab8422fa0ea1.png

0627e5017b81bdf79cd6de1eb042144b.png

d2d6db2b0b14ae212d99bdb8c883bc4c.png

角含半角模型小试牛刀

4186f9da6bd3fdb9f01a75ab6f6c2b5e.png

3e174d209edb347e037579daaca857d8.png

2b5b2d719a3dbf694d9537a713f3b3c6.png

07bfd6dab254b980f7ce70910556f935.png

4406c244a5f9f1cbcb866e879e41393b.png

7fd88d966b421187131d082e72f419f2.png

3c5a5b03cf76a20ac9ef4b793143b5fc.png

文章来源:王通博初中数学(ID:wtbmaths);如存图片/音视频/作者/来源等使用或标注有误,请联系微信alarmact处理 最后,邀您进下方公号学习

fb21637ced5dc8971cc5f04eddfd0138.png

29116216c7d23d5df7eb9333b9c013fd.gif 戳“ 阅读原文 ”,更有料!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值