指数随机变量 泊松过程跳_随机过程学习笔记(1):指数分布与泊松过程

这篇笔记介绍了指数随机变量和泊松过程的相关知识,包括概率论基础、指数分布的定义、性质以及泊松过程的数学定义和重要定理。通过例子解释了指数分布的无记忆性,并指出泊松过程的事件间隔是独立同分布的指数随机变量。此外,还讨论了泊松过程的平稳增量和独立增量性质,以及如何通过定理估算事件发生次数。
摘要由CSDN通过智能技术生成

笔记主要基于中文版《应用随机过程 Introduction to Probability Models 》(Sheldon M. Ross),只有非常少的一部分是我自己的注解。写这个笔记的目的是自己复习用,阅读需要一定的微积分和概率论基础。本人为初学者,且全部为自学,如果笔记中有错误,欢迎指正。

提示:概率论和指数分布作为本节的基础,我把一些重要公式写在开头,但是可以直接从泊松过程开始阅读,在泊松过程中用到相关知识点的时候再回头阅读。当然,从头读到尾也许理解得更好。

概率论复习

随机过程是概率论的延申。因为我本科并没有系统学过概率论,所以有必要把一些概率论常用公式罗列在开头。

随机变量用大写字母X表示,随机变量的取值用小写字母x表示,期望和方差的定义如下

利用二阶矩求方差的方法有时比较实用。

通过取条件求概率:

通过取条件求期望:

通过取条件求方差(条件方差公式):

两个独立随机变量X,Y的和的分布计算也很常用,也就是卷积

指数分布及其重要性质

指数分布的定义:

容易计算指数分布的期望为

,方差为

. 对应的CDF(累积分布函数)为

指数分布的重要性质1:指数分布是无记忆的,而且是唯一具有无记忆性质的概率分布。

所谓无记忆的意思是

这个性质可以简单地用累计分布函数来验证,因为

为了具象理解无记忆性,可以举一个例子:假设一个灯泡的寿命是个随机变量X,按照

指数分布。已知灯泡已经正常工作了t个单位时间,那么它还剩下的寿命的概率分布仍然是同样的指数分布。或者说,不管这个灯泡正常工作了多久,它剩下的寿命都是同一个指数分布,期望都是

此外,为了更好地理解指数分布,我们定义一个失败率r(t)

无论什么分布都可以定义r(t),而且r(t)唯一确定概率分布。以灯泡寿命为例,假设灯泡寿命是个随机变量,概率密度函数为f(t),失败率r(t)的含义是指在t时刻,该灯泡在t+dt这段时间内失效的概率。这个例子中,无记忆性可以理解为r(t)是个常数,因为灯泡的失效跟它正常工作了多久无关,所以它在任何时刻的失败率都是相等的。容易证明若

,那么对应的概率分布就是参数为

的指数分布,

通常称为指数分布的速率。(可以给予

一个物理含义,若时间单位是s(秒),则

的量纲为1/s,也就是速率,期望

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值